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1 Introduction

In [CatLogic], Lurie sketches out how certain concepts from classical categor-
ical first-order logic can be generalized to the setting of higher categories. In
particular, he defines a generalization of the notion of ultracategory to allow for
ultrastructures on ∞-categories.

In the classical setting, there is an equivalence of categories between (small)
discrete ultracategories, which we may think of as ultrasets, and compact Haus-
dorff spaces. Lurie claims that this can be extended to classify those ultra-
∞-categories whose underlying category is a (bounded) Kan complex, in the
following way:

Theorem 1.1. Let clU be the category of ultra-∞-categories whose underlying
∞-category is a bounded Kan complex, i.e. a Kan complex with only finitely
many nonzero homotopy groups. Then we have the following:

(1) clU is an ∞-pretopos.

(2) The subcategory of discrete objects, clU≤0, is equivalent to the (1-) category
of ultrasets.

(3) Among ∞-pretopoi, clU enjoys the following universal property: for all
∞-pretopoid clC, the natural map

Funpre(clU, clC)→ Funpre(clU≤0, clC≤0)

is an equivalence.

The purpose of this note is to give an explanation of these terms, and prove
theorem 1.1. We will prove each statement separately, as theorem 3.9, proposi-
tion 3.11, and theorem 3.13.

Remark 1.1. It is more or less clear that theorem 1.1 identifies the category
clU up to equivalence among ∞-pretopoi. In [CatLogic], Lurie claims that
one can replace clU≤0 with any ordinary pretopos, and form a left adjoint to
the functor (−)≤0 from∞-pretopoi to pretopoi, which he denotes (−)+. In this
language, we could state theorem 1.1 as clU = CHaus+ (as Lurie does). We
will not make a study of this functor in general, so we stick with the explicit
formulation above.
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Remark 1.2. Dealing with ultra-∞-categories involves some extra set-theoretic
issues. This is essentially analogous to the issues that occur for usual ultracate-
gories, which stem from the fact that the collection of operations involved in an
ultra(∞-)category is indexed by the collection of all ultrafilters in all sets. We
will not make any particular effort to discuss these issues. See the discussion in
[UCat]

2 Pretopoi

2.1 Ordinary pretopoi

Definition 2.1. An equivalence relation on an object X in a category clC is a
subobject R ↪→ X ×X (i.e. a monomorphism) with the property that, for each
A ∈ clC, the induced subset

Map(A,R) ⊂ Map(A,X ×X) ∼= Map(A,X)×Map(A,X)

is an equivalence relation on Map(A,X).
An equivalence relation is effective if a coequalizer R⇒ X ×X → C exists,

and moreover R is the pullback X ×C X.
A morphism f : X → C is an effective epimorphism if

X ×C X ⇒ X → C

is a coequalizer.

Definition 2.2. We say that the coproduct of X and Y , X t Y , is disjoint if
X ↪→ X t Y is a monomorphism, and so is Y ↪→ X t Y , and moreover the
pullback X ×XtY Y is an initial object.

Definition 2.3. A pretopos is a 1-category clC with the following properties:

1. clC has finite limits.

2. All equivalence relations in clC are effective.

3. clC has finite coproducts, and coproducts are disjoint.

4. The collection of effective epimorphisms is stable under pullback.

5. The formation of finite coproducts is preserved by pullback. By this we
mean that the pullback functor clC/Y → clC/X preserves finite coprod-
ucts for each f : X → Y .

A functor clC → clD between pretoposes is a pretopos functor if it pre-
serves finite coproducts, finite limits, and effective epimorphisms. We denote by
Funpre(clC, clD) the full subcategory of the functor category spanned by the
pretopos functors.

Example 2.4. The categories Fin and Set are both pretopoi.
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Definition 2.5. For a pretopos clC, the category of pretopos functors Funpre(clC, Set)
is denoted by Mod(clC), and referred to as the category of models of clC.

Pretoposes are the basis for a categorical approach to first-order logic. To
each first-order theory T , one can associate a syntactic pretopos Syn(T ). From
this, one can recover the models of the theory as Mod(Syn(T )).

2.2 ∞-pretopoi

To define the suitable ∞-categorical version of pretopoi, we will need some
preliminary notions. In particular, we will need the notion of groupoid object
described in [HTT]. Observe that if clC has finite limits (this is the only case
we are interested in), this notion admits the following reformulation:

Definition 2.6. Let clC be an ∞-category. Suppose clC has finite limits. A
groupoid object in clC is a simplicial object D : ∆op → clC with the property
that the map D(∆n)→ D(Λnk ) is an equivalence in clC for each n ≥ 2, 0 ≤ k ≤
n.

Here D(Λnk ) is defined in the obvious way as a limit in clC.

We omit a proof of this.
One should think of a groupoid object as an internal Kan complex in clC -

this is like a homotopy coherent equivalence relation.

Definition 2.7. We denote by ∆+ the augmented simplicial category, which is
∆ with an extra initial object [−1]

Remark 2.8. Note that ∆+ ' ∆/, and ∆op
+ ' (∆op).. In particular, colimit

diagrams of simplicial objects are augmented simplicial objects.

Definition 2.9. Let clC be an ∞-category, and let D : ∆op
+ → clC be an

augmented simplicial object. Then there is always a canonical commutative
diagram

D1 D0

D0 D−1

We say that D is a Cech nerve if D|∆op is a groupoid, and this diagram is a
pullback.

Proposition 2.10 (HTT 6.1.2.11). Let D be an augmented simplicial object.

Then D is a Cech nerve if an only if it is right Kan extended from (∆≤0
+ )op

Remark 2.11. It follows that a Cech nerve U : ∆op
+ → clC is uniquely deter-

mined by the map u : U([0]) → U([−1]). We also say that it is the Cech nerve
of u
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Definition 2.12. A map f : X → Y is an effective epimorphism if it admits a
Cech nerve, which is furthermore a colimit diagram (so that Y is the geometric
realization of the underlying simplicial object).

A groupoid object X• is effective if it admits a geometric realization, and
the corresponding colimit diagram is a Cech nerve. Concretely, this means the
geometric realization |X•| exists, and the diagram

X1 X0

X0 |X•|

is a pullback.

Definition 2.13. We call a map X → Y of in clS a monomorphism if it induces
an injection on π0 and an equivalence on all higher homotopy groups, for all
basepoints. Equivalently, we may ask that it factors as X ' X̃ ↪→ Y , where X̃
is a subspace of Y consisting of certain path components.

We call a map X → Y in a general ∞-category clC a monomorphism if,
for each A ∈ clC, we have Map(A,X) → Map(A, Y ) a monomorphism in the
above sense.

One easily checks that these definitions agree when clC = clS

Remark 2.14. With this definition in hand, the notion of disjoint coprod-
ucts makes sense in ∞-categories as well. For brevity we do not write out the
definition again.

Definition 2.15. An ∞-pretopos is an ∞-category clC with the following
properties:

1. clC has all finite limits.

2. clC has all finite coproducts, and they are preserved by pullback, and
disjoint.

3. All groupoid objects in clC are effective.

4. The collection of effective epimorphisms is stable under pullback. Equiv-
alently, taking colimits of groupoid objects is preserved by pullback.

A functor of ∞-pretopoi, or just a pretopos functor is a functor which pre-
serves finite limits, finite coproducts and effective epimorphisms. We again de-
note by Funpre(clC, clD) the full subcategory of the functor category spanned
by the pretopos functors.

A model of an ∞-pretopos clC is a functor of ∞-pretopoi clC → clS

Remark 2.16. Our use of the same notation for the categories of pretopos func-
tors in the cases of∞-pretopoi and ordinary pretopoi is somewhat unfortunate,
but should not cause confusion in practice.
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Warning 2.17. An 1-category which is an ordinary pretopos is generally not
an ∞-pretopos. The problem is that groupoid objects in e.g. sets are the same
thing as groupoids, not equivalence relations. Given a groupoid in sets, the
geometric realization is just π0, and the set of morphisms is not the pullback
you want (this pullback is just the equivalence relation on the set of objects).

Definition 2.18. An object X of an ∞-category clC is n-truncated if the
space Map(Y,X) is n-truncated for all objects Y ∈ clC (i.e πi Map(Y,X) = 0
for i > n).

The full subcategory of clC spanned by the n-truncated objects is denotes
clC≤n We call an object discrete if it is 0-truncated.

Remark 2.19. By [HTT], clC≤0 is (equivalent to the nerve of) an ordinary
category.

Example 2.20. clS≤0 ' Set.

We have the following relation between pretopoi and ∞-pretopoi:

Proposition 2.21. Suppose clC is an∞-pretopos. Then clC≤0 is an ordinary
pretopos. Moreover, if clD is another ∞-pretopos, any pretopos functor F :
clC → clD restricts to a functor F : clC≤0 → clD≤0, which is a pretopos
functor.

Proof. It is clear that clC≤0 is stable under finite limits.
First, we will verify that clC≤0 is stable under finite coproducts. Let X,Y ∈

clC≤0 be given, and let A ∈ clC be any object. Suppose f : A→ X+Y is a map.
We must show that the space of maps homotopic to this map is contractible. To
do so, note that since pullbacks preserve coproducts, we may form this diagram:

AX X

A X + Y

AY Y

f

Here the left column is also a coproduct diagram, andAX , AY are the obvious
pullbacks.

Now, AX and AY depend on f , but we may choose them to depend only
on its homotopy class. Now giving a map A → X + Y is equivalent to giving
two maps AX , AY → X + Y . But for this map to be homotopic to f , certainly
these maps must factor over X and Y . Hence we may equivalently ask for maps
AX → X,AY → Y , since the maps X,Y → X + Y are monomorphisms.

So we may identify the connected component of f in Map(A,X + Y ) with
a subspace of the product Map(AX , X) ×Map(AY , Y ). Hence this connected
component is discrete, hence contractible.
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Now let us consider equvalence relations. Given an equivalence relation
X1 ⇒ X0 in clC≤0, we may extend it to a simplicial diagram with Xn =
X1 ×X0

· · · ×X0
X1 the n − 1-fold pullback, and the natural face/degeneracy

maps coming from the fact that we started with an equivalence relation. Since
these objects are discrete, there is no difficulty defining this diagram, and it is
clearly a groupoid. Hence is has a geometric realization, which can easily be
seen to be discrete. Moreover, this geometric realization is also a quotient for
the original diagram.

Hence clC≤0 has finite products, quotients by equivalence relations and co-
products. The compatibility required to make this a pretopos is implied by the
fact that these things are computed in clC, as described.

The fact that a pretopos functor preserves discreteness is an immediate con-
sequence of [SAG]. The fact that the restricted functor is also a pretopos
functor is immediate from the above.

3 Ultracategories

To define the ∞-categorical version of ultracategories, we will need to consider
the category of free stone spaces. The idea is that maps between free stone
spaces describe the various ways of taking ultraproducts.

Definition 3.1. We define two full subcategories of the category of topological
spaces:

Stonefr ⊆ Stone ⊆ Top

Stone is the full subcategory spanned by the Stone spaces, those spaces which are
compact, locally Hausdorff, and totally disconnected. Recall that an example
of a Stone space is βS, the Stone-Cech compactification of a set (i.e. a discrete
space) S. Stonefr is the full subcategory of Stone spanned by the spaces βS for
each set S

Definition 3.2. An ultra-∞-category consists of a locally Cartesian fibration
of ∞-categories π : clE → Stonefr satisfying the following properties.

(a) Let clEβI denote the fiber of π over βI. For each set I, and each element
i ∈ I, there is an induced functor clEβI → clE{i}. The induced functor

clEβI →
∏
i∈I

clE{i}

is an equivalence of ∞-categories.

(b) Suppose we are given composable morphisms A
f→ B

g→ C in clE, with
both f, g locally π-Cartesian. Suppose furthermore π(f) preserves isolated
points. Then also g ◦ f is locally π-Cartesian.

A functor of ultra-∞-categories is a functor over Stonefr which preserves
locally Cartesian morphisms. This defines the category of ultra-∞-categories as

a subcategory of Ĉat∞/ Stonefr
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Remark 3.3. See [UCat] for an extended discussion of ultracategories in a
1-categorical setting. We will make use of [UCat], which identifies ultrasets,
i.e ultracategories with a discrete underlying category, and compact Hausdorff
spaces.

We will work with the following class of ultra-∞-categories.

Definition 3.4. An ultra-∞-category is an ultraspace if the underlying ∞-
category clE{∗} is a small Kan complex. If this Kan complex is furthermore
bounded, i.e. has only finitely many nonzero homotopy groups, we say that the
ultraspace is bounded.

We define clU to be the ∞-category of bounded ultraspaces.

Lemma 3.5. If π : clE → Stonefr is a locally Cartesian fibration for which all
fibers are Kan complexes, it is a Cartesian fibration.

Proof. By [HTT], the condition that π is Cartesian is the condition that cer-
tain natural transformations between functors clEX → clEY are natural equiv-
alences. But if clEY is a Kan complex, all such natural transformations are
equivalences, so this is automatic.

Theorem 3.6. We may identify clU with the full subcategory of Fun(Stonefr,op, clS)
spanned by those functors F which map coproducts in Stonefr to products in
clS, and which furthermore have F ({∗}) a bounded space.

Proof. First suppose A is an ultraspace. Then clearly each AβI is also a space,
since it is a product of spaces. Hence by the lemma, the category of ultraspaces
is a full subcategory of the category of Cartesian fibrations over Stonefr, which

is equivalent to Fun(Stonefr, Ĉat∞). The conditions of being an ultraspace cor-

respond to mapping coproducts to products, and having image in clS ⊆ Ĉat∞.
The further condition of being bounded corresponds to F (∗) being bounded.

Remark 3.7. For a bounded ultraspace F , F (βI) = F (∗)I is bounded for all
sets I.

Lemma 3.8. The discrete objects of clU are precisely those ultraspaces X
where X(∗) is a discrete space.

Proof. Under the identification above, we observe that MapStonefr (−, ∗) ac-
quires the structure of an ultraspace, and in fact is the terminal ultraspace.
Let us denote it ∗. By the Yoneda lemma, Map(∗, X) ' X(∗), so if X is
discrete, X(∗) is discrete.

For the other direction, suppose X(∗) is discrete. Then also X(A) ' X(∗)A
is discrete for all A ∈ Stonefr. Let Y be an arbitrary ultraspace, and write Y =
colimi Map(−, Ai). (Where this colimit is computed in Fun(Stonefr,op, clS)).

Then
Map(Y,X) ' lim

i
Map(Map(−, Ai), X) ' lim

i
X(Ai)

it follows that Map(Y,X) is discrete, so that X is discrete.
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Theorem 3.9. clU is an ∞-pretopos.

Proof. It is clear that clU ⊂ Fun(Stonefr,op, clS) is stable under finite limits,
so clU admits finite limits.

Let us construct finite coproducts in clU . We will accomplish this by con-
structing finite coproducts in the category of functors which preserve finite prod-
ucts, Fun×(Stonefr,op, clS), and showing that clU is stable under them.

To do this, observe that we may identify Fun×(Stonefr,op, clS) with a full
subcategory of the category

Funlax(Stonefr,op, clS)

of lax symmetric-monoidal functors, where we give both Stonefr,op and clS the
Cartesian monoidal structure.

This may further be indentified with CAlg(Fun(Stonefr,op, clS)), where we
give the functor category the Day convolution monoidal structure.

By [HA], coproducts in this category exist, and can be identified with tensor
products in the underlying category, i.e with Day convolution of the concrete
functors in question.

So it only remains to verify that clU is stable under this construction. It is
given by the formula

(A~B)(βI) =
∐

J,K : βJtβK=βI

A(βJ)×B(βK)

Suppose that both A and B preserve products. Then the above is equivalent
to ∐

J,K : JtK=I

A(∗)J ×B(∗)K

' (A(∗) tB(∗))I

Since pullbacks in clU are simply computed pointwise, this formula for the
coproduct makes the verification of disjointness and universality of coproducts
straightforward.

It remains to see that groupoid objects in clU are effective, and effective
epimorphisms are universal. Both of these claims follow directly from the
fact that clU is stable under geometric realization of groupoid objects inside
Fun(Stonefr,op, clS), which in turn follows from the fact that geometric realiza-
tion of groupoid objects commutes with products (even infinite ones).

(Here we are also silently using the fact that a diagram in clU is a groupoid
if and only if it is a groupoid in Fun(Stonefr,op, clS), if and only if it is levelwise
a groupoid).

To prove this, first note that a product of groupoids is again a groupoid.
Hence we are essentially asking if the colimit functor cl Gpd(clS) → clS pre-
serves products. We may use the equivalence of [HTT] to identify this with
the target functor Fun(∆1, clS)eff → clS. Here the subscript denotes the full
subcategory of effective epimorphisms. Hence it suffices to show that this sub-
category is stable under products. This follows immediately from [HTT]
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Construction 3.10. Suppose we have a bounded ultraspace clE, and that the
underlying space X = Xop is discrete. Then for each set I and each ultrafilter
µ in I, we obtain a functor

XI '← clEβI → clE{µ} = X

which is well-defined up to contractible ambiguity. But since XI and X are
sets, this is just a well-defined function. Denote this function

∫
I
•dµ.

Proposition 3.11. The maps of construction 3.10 determine an ultrastructure
on X. Moreover, this assignment determines a functor

clU≤0 → CHaus

under the identification of compact Hausdorff spaces with ultrasets, which is an
equivalence of categories.

Remark 3.12. In fact, one should expect to derive this from a more general
proposition, namely that ultra-∞-categories with underlying object a 1-category
are equivalent to ordinary ultracategories. But working with just sets brings
some simplifications, which we will take advantage of.

Proof. Note that we do not have to define any more data, since X is a set. We
just have to check the conditions of [UCat]

By construction of the equivalence XI ' clEβI , if µ = δi for i ∈ I, the map∫
I
•dµ is equivalent to the ith coordinate projection - in other words, it equals

it.
Let us suppose we are given an S-indexed family of ultrafilters in T . This is

equivalently a function ν : S → βT , which is precisely a map

βS → βT in Stonefr

Furthermore, we are given an ultrafilter µ on S, which we regard as a point

{µ} ↪→ βS

We have a triangle in Stonefr

{∗} βS

βT

µ

∫
S
νsdµ

(The diagonal is simply the composite).
This gives a triangle of functions:

X XS

XT

∫
S
•dν

∫
T
•d(

∫
S
νsdµ)

(
∫
T
•dνs)s∈S
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Now the Fubini condition is that this diagram commutes. But this follows
directly from lemma 3.5

To define the functor, note that being an ultrafunctor(ultrafunction) between
ultrasets is a property, not extra structure. So it suffices to show that, given an
ultrafunctor clE → clE′ between two 0-truncated ultraspaces, the underlying
functor preserves ultraproducts, which is straightforward.

To see that this functor is fully faithful, note that ultrafunctors between 0-
truncated ultraspaces are uniquely determined by the underlying function, since
one always has commutative diagrams

clEβI XI

clE′βI X ′I

∼

∼

(and the higher coherence information involved in defining an ultrafunctor
is trivial).

Lastly, to see essential surjectivity, let an ultraset X be given. Then we
simply define the category clE to have as objects pair (βI, f), where βI is a
free Stone space and f : βI → X is an ultrafunction (i.e a continuous function).
A morphism (βI, f)→ (βJ, g) is a map βI → βJ rendering the obvious diagram
commutative.

Now it is easy to verify that clE → Stonefr is an ultra-∞-category which
goes to X.

Theorem 3.13. The restriction functor

Funpre(clU, clC)→ Funpre(clU≤0, clC≤0)

is an equivalence for each ∞-pretopos clC.

Remark 3.14. Note that this theorem asserts an equivalence between an ∞-
category and a 1-category. So this is a fairly strong statement.

Proof. By theorem 3.6 and lemma 3.8, we may regard clU≤0 as the full sub-

category of Fun(Stonefr,op, clS) spanned by those functors F which preserve
products and such that F (∗) (and hence F (βI) for each I) is a discrete space,
i.e a set.

Let clG ⊆ Fun(Stonefr,op, clS) be the category generated by the representa-
bles under geometric realizations of groupoid objects. We claim that (under the
identification above), clG = clU First, our proof of theorem 3.9 shows that
clU is stable under geometric realization of groupoids, and it also contains the
representables. This shows clG ⊆ clU

To show clU ⊆ clG, first consider a 0-bounded (i.e discrete) X ∈ clU . By
proposition 3.11, we may view X as an ultraset. Now we may consider the map
βX → X which describes the ultrastructure on X. This map is a continous
map of compact Hausdorff spaces, so we may view it as a map in clU from
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the functor represented by βX to X. This is levelwise surjective (on π0), so
by our proof of theorem 3.9, it is an essential epimorphism. Hence X is the
geometric realization of the Cech nerve of this map. However, the compact
Hausdorff spaces appearing in the Cech nerve are all limits of representable
functors, hence representable. Hence X is in clG

Now let X ∈ clU be an arbitary bounded ultraspace. Suppose X is n-
truncated, and suppose by induction all n− 1-truncated ultraspaces are in clG
Now π0X inherits an ultrastructure, since π0 preserves products. Let π0X →
X be the inclusion of a point in each connected component, expanded to an
ultrafunctor in the natural way. Consider the Cech nerve D of this map. Since
clU ⊆ Fun(Stonefr,op, clS) is stable under finite limits, the Cech nerve can
be computed levelwise, and since it’s also stable under geometric realizations
of groupoids, the geometric realization of the Cech nerve may be computed
levelwise. Since the map π0X → X is levelwise an effective epimorphism in
clS, we get that the canonical map |D| → X is levelwise an equivalence, hence
an equivalence.

By the limit formula for right Kan extensions, all the spaces in the Cech
nerve can be seen to be n− 1-truncated. Hence X is a geometric realization of
a groupoid in clG, so X ∈ clG.

Hence Fun′(clU, clC)
∼→ Fun(Stonefr, clC) is an equivalence, where Fun′

denotes the full subcategory of functors preserving geometric realization of
groupoids.

Since the representables are clearly discrete, so that we have

Stonefr ⊆ clU≤0 ⊆ clU,

we may factor the restriction as

Fun′(clU, clC)→ Fun(clU≤0, clC)→ Fun(Stonefr, clC)

By an argument completely analogous to the above (minus the induction), we
can show that

clU≤0 ⊆ Fun(Stonefr,op, clS)

is the free completion of Stonefr under quotients by equivalence relations (rather
than geometric realizations of groupoids). Hence if we let Fun ”(clU≤0, clC)
denote the full subcategory of those functors which preserve these quotients, we
find that the restriction

Fun ”(clU≤0, clC)
∼→ Fun(Stonefr, clC)

is an equivalence, and hence

Fun′(clU, clC)
∼→ Fun ”(clU≤0, clC)

is an equivalence by 2-of-3.’
It only remains to see that the full subcategories of pretopos functors are

identified under this restriction. This follows from the proof of proposition 2.21,
as well as the fact that coproducts and finite limits commute with geometric
realizations (in clS)
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