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Abstract

Building on work of Rubenstein et al, we consider a notion of structure-
preserving transformations between structural causal models. We describe
a category, in the sense of category theory, of such models, and explore the
properties of this category, FinMod. We further generalize this theory to
encompass approximate transformations, which only preserve the causal
structure up to a certain error, and a larger class of profinite models, which
includes for example graphical models on infinite graphs. The language
of category theory provides a natural setting for these generalizations,
and allows for certain definitions, such as the error of a transformation
between infinite models, to be made automatically.
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1 Introduction

By convention sweet is sweet,
bitter is bitter, hot is hot, cold is
cold, color is color; but in truth
there are only atoms and the void.

Democritus

It is a common aphorism in statistics that “all models are wrong” (Often at-
tributed to George Box, see [23]). Any statistical model should be not regarded
as a precise description of the universe, or even of the domain under considera-
tion, but as a useful approximation. It is natural to ask, in this situation, which
properties of a model makes it “useful”. Of course, this is a question about the
relationship of a model to “the universe”, and since we do not have a mathemat-
ical description of the universe, it is not clear that we can expect this question
to have a precise answer. Nevertheless, we can ask a related question: when
is it permissible to replace one model with another, simplified one? Instead of
asking whether a model is useful relative to the universe, we ask whether it’s
useful relative to some larger model, which stands in for the universe. In [21],
Rubenstein et al consider a potential answer to this question, in the context of
structural causal models: one model should be a (measurable) function of the
other, in a way that preserves not only the observed probability, but also the
interventional probabilities.
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Inherent in this answer is the perspective that “utility” or “exactness” is not
just a relation between two models, but rather a property of a transformation
between two models. This leads to the idea that one could study causal models
by studying the system of such transformations. This is the perspective of
category theory — that to study mathematical objects, we should study the
transformations between them. The goal of this thesis is to use this language
to develop a theory of transformations between causal models.

Though the application of category theory to the domain of causal modeling
is not exactly mainstream, there is an existing body of work in this domain.
In [4], Fong develops the theory of directed acyclic graph (DAG) models us-
ing “syntactical categories” associated to a DAG. This is further developed by
Jacobs–Kissinger–Zanasi in [7], where they show how to use string diagram ma-
nipulations to carry out causal inference. More broadly, Fritz has begun an
ambitious program of developing probability theory in the language of cate-
gories, which is described in [5]. Working in this framework, Patterson ([17])
has developed a precise analogy between statistics and universal algebra, where
a statistical model becomes a model of a theory, in the sense of logic. This anal-
ogy is also present in the work of Fong and Jacobs–Kissinger–Zanasi, although
not discussed explicitly.

In this thesis, we take a different approach from these authors — where the
transformations they are concerned with are generally Markov kernels of some
sort, and a causal model is represented as a collection of such transformations,
we are concerned with transformations between causal models. At first, we con-
sider only transformations between finite models — i.e. models with a finite
number of variables, each with a finite number of possible values. This simpli-
fies the theory considerably. For instance, it allows us to use Jensen–Shannon
distance (Definition 3.18) without getting into the weeds of differential entropy.
We consider a general notion of transformation with no requirements on “con-
sistency” between the two models — such a transformation has an associated
error, which is defined as the prediction error when using the high-level model
rather than the low-level model. The “exact” transformations of Rubenstein et
al are then those transformations with error zero. This provides a partial answer
to a question posed in [21], about how to define a useful notion of “approximate”
transformation between causal models.

Finally, we look for a generalization of this theory to more general models
than just finite ones. Rather than looking ad-hoc for some sufficiently con-
strained class of graphical models where the theory still makes sense, we use
a piece of categorical technology called (enriched) copresheaves to construct
a useful generalization in a single line. These models, which we call profinite
models, are quite abstract, but still contain enough structure to reasonably be
interpreted as a model.

1.1 Guide to reading

Because this thesis concerns two fields which do not have a lot of contact, I’ve
put a lot of effort into structuring it in such a way that it will be useful and
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readable for people with a wide variety of backgrounds. Those aspects of the
theory of causal modeling that I touch here are elementary enough that they
can probably be picked up along the way, even by people with no significant
experience with the field1. However, category theory is notoriously abstract
and hard to wrap your head around, so in section 2, I try to sketch the basics
for the benefit of novices. People with some familiarity with category theory
can probably skip most of this section at first and simply return when needed.
The exceptions are Definitions 2.8, 2.24 and 2.43, concerning the category Err of
“error spaces”, which is probably unfamiliar. In subsection Section 2.5, I prove
some necessary theorems about the enriched category theory of Err. I suggest
that novices skip this section — the relevant consequences will be spelled out
elsewhere in the text. Section 3 gives a brief discussion of certain aspects of
probability theory, including how to treat them in a categorical language. The
most important result here is Proposition 3.19, which we might summarise as
saying that the Jensen-Shannon distance on probability distributions is compo-
sitional, in the sense that it is compatible with the composition of stochastic
matrices. This is a key result in setting up a useful theory of approximate ab-
stractions. This section should probably be read by everyone — the probability
theory here is not that interesting to experts, but it will be helpful to familiarize
yourself with the categorical approach that I will use in the rest of the thesis.
In section 4, we are finally ready to approach the main topic of the thesis, by
defining the Err-enriched category of finite causal models and abstractions. I
also give several natural examples of abstraction. In section 5, I develop a broad
generalization of the technology in section 4, namely the so-called profinite mod-
els. These contain, for example, graphical models with an infinite number of
nodes (Example 5.9), discrete dynamical systems (Example 5.14), and certain
continuous-time systems like Poisson processes (Example 5.13). The correct
notion of abstraction between such models, and the correct measure of error,
is derived naturally from categorical machinery. I also describe how to work
concretely with this very abstract notion of model, in terms of “variables” and
“probabilities”. Sections 4 & 5 last two sections contain the main ideas of the
thesis, and should be read by everyone.

When certain ideas are very abstract, I try to provide reasonable explana-
tions. Hence, if some proposition seems impossibly technical, hopefully you can
skip it and still get by in the rest of the thesis. I have marked certain bits with
two concerned eyes, as here on the left. This means that the marked sections
are extra-technical or abstract, and might be skipped by people who are not
familiar with category theory.

1.2 Acknowledgements

First of all, I would like to thank my advisor, Sebastian Weichwald. Thank you
for taking me up on the crazy idea that eventually became this thesis, and for
consistently useful discussions about the causal side of things. This certainly

1After all, the thesis was written by such a person.
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would not have existed without you. Second, I would like to thank Tobias Fritz
for useful conversations during the development of this thesis. Not everything
we discussed made it in, but the finished product still owes a lot to his input.
Third, thanks to Fosco Loregian for pointing me to a crucial reference at exactly
the right time. I’ve had useful mathematical conversations with a large number
of people in the six months it took to write this thesis. If I’ve forgotten to
mention you here, rest assured that your input was appreciated nonetheless.
Last, but certainly not least, I would like to thank Julie for keeping me sane
through the past six months. The combination of a global pandemic and a thesis
deadline was not the best thing I’ve tried, but you managed to get me through
it. For that, I’m thankful.

2 Category Theory

The goal of this section is to present the categorical technology that will be
needed in the rest of the thesis. Since there are quite a few fairly technical
ideas here, it is probably not possible for readers with no prior knowledge to
assimilate them all in such a short amount of time. Therefore, this section will
not attempt to teach you all the category theory that’s used. The goal is instead
to present a clear enough sketch of the topic that most of the rest of the thesis
can be followed. As an instance of this philosophy, I won’t describe enriched
categories (Section 2.3) in full detail. Instead, I try to indicate the general idea,
and spell out those definitions we need in the cases that we consider. The hope
is that those without a background in category theory will be able to follow the
material, while all the technical details are still available to those who do have
this knowledge.

There are several excellent, readable introductions to category theory avail-
able — I will mention in particular Riehl’s book [20], and Perrone’s lecture
notes [18]. Both are very approachable even to readers with no background in
“abstract” mathematics.

The basic idea of category theory is

1. To study mathematical objects (like groups, vector spaces, topological
spaces, etc) by studying the “structure-preserving maps” between them
(group homomorphisms, linear maps, continuous maps).

2. To make this study systematic, by abstracting out the general features of
a “system of objects and morphisms”.

Such a system of objects and morphisms is called a category :

Definition 2.1. A category C consists of the following data:

1. A collection of objects, denoted obC. We usually just write X ∈ C for
X ∈ obC

2. For each pair of objects X,Y ∈ C, a set of morphisms C(X,Y ). When
f ∈ C(X,Y ), we write f : X → Y .
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3. A composition, a function ◦ : C(X,Y ) × C(Y, Z) → C(X,Z), which maps
f : X → Y, g : Y → Z to g ◦ f : X → Z.

4. For each object X, an identity 1X : X → X.

This data must satisfy the following properties:

1. 1Y ◦f = f ◦1X = f for all morphisms f : X → Y . (This is called unitality)

2. f ◦ (g ◦h) = (f ◦ g) ◦h for all triples of morphisms where this composition
is defined (i.e h : X → Y, g : Y → Z, f : Z → W ). (This is called
associativity).

Remark 2.2.

1. We often just write fg for the composite f◦g in a category. The associativ-
ity of composition makes it safe to omit the parentheses when composing
three or more maps, so we simply write fgh for the composite f ◦ (g ◦ f)
and so on.

2. We also call morphisms maps (as we did just above), or arrows. I have
tried to reserve the word function for actual functions between sets in the
usual sense.

3. We may occasionally write Hom(A,B) for the set of maps A → B if
the category is understood — Hom is short for homomorphism, and this
notation comes from algebra, although we use it even in cases where the
morphisms of the category are not really “homomorphisms” in any sense.

4. When f : A → B, we call A the domain and B the codomain. A bit of
a subtlety is that we require that each map in a category has a specific
domain and codomain — for example, we distinguish between the identity
map 1Z : Z→ Z and the inclusion map i : Z ↪→ R (in the category of sets,
see below). These are different morphisms, even though they have the
same value at every point.

Example 2.3. There is a category Set, where the objects are sets, the mor-
phisms X → Y are simply the functions with domain X and codomain Y , and
the composition is just the ordinary composition of functions.

Remark 2.4. In many cases, the composition and identities are more or less
obvious once the objects and morphisms have been defined. Thus, we might
have described Set simply as “the category of sets and functions”, or even “the
category of sets”, for brevity. Below, we will frequently use this convention.

Example 2.5.

1. There is a category Fin of finite sets and functions.

2. There is a category Grp of groups and group homomorphisms.
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3. There is a category VectR of real vector spaces and linear maps.

4. For any partially ordered set (S,≤), there is a category with objects given
by points of S, and a unique morphism s→ s′ if s ≤ s′ (and otherwise no
morphisms).

5. For any group G = (G, ·), there is a category BG with one object, ∗, and
BG(∗, ∗) = G, with composition given by the group law (i.e f ◦ g = f · g).
The identity 1∗ is simply the neutral element of the group.

6. For any group G, there is a category GSet of (left) G-sets, sets with a left
action of G. The morphisms are equivariant functions.

7. There is a category SmMan of smooth manifolds and smooth maps.

8. There is a category Meas of measurable spaces and measurable functions.

9. There is a category Prob of probability spaces (i.e measurable spaces
equipped with a probability measure) and measure-preserving measurable
maps.

Remark 2.6. In many of the above cases, there is a technical issue due to the
fact that the collection of objects does not form a set (for instance, there is no
set of all sets). There are various ways of resolving these issues — for a brief
discussion, see [20, p. 6]. The distinction between a category whose objects
and morphisms fit inside a set, called a small category, and one without this
property, a large category, is not entirely irrelevant, but it should probably be
ignored while first getting a feel for the subject.

Category-theorists often use so-called commutative diagrams to reason about
categories. Here is an example:

R R

R R

+2

·2 ·2
+4

(1)

Such a diagram depicts objects of a category and morphisms between them
— in this case, the category is simply Set. This square is said to commute if both
ways of going around result in the same composite morphism, as is the case in the
diagram above. (Somewhat confusingly, the term “commutative” is used both
to distinguish this type of diagrams from other types — e.g. string diagrams,
Section 2.2 — as well as the specific property that certain compositions are
equal, which may or may not hold in a given diagram.)

We now list a few categories that will play an important role later

Definition 2.7. The category Met of metric spaces is defined as follows:

• The objects are metric spaces.
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• The maps f : (X, dX) → (Y, dY ) are short or 1-Lipschitz functions, i.e
those satisfying dY (f(x), f(x′)) ≤ dX(x, x′) for all x, x′ ∈ X.

Definition 2.8. An error space is a set S equipped with a function eSS →
[0,∞], called the error. A map of error spaces (S, eS) → (S′, eS′) is a map
f : S → S′ so that eS′(f(s)) ≤ eS(s) for all s ∈ S — in other words, a map
can decrease the error of a point, but not increase it. We usually omit the error
function and simply write “S is an error space”. We also write simply e for the
error function if there is no chance of confusion. This defines the category Err
of error spaces.

Definition 2.9. We let ∗e ∈ Err denote the set {∗} with e(∗) = e. We let
∗ = ∗0.

Note that there is a unique map S → ∗e if and only if each s ∈ S has
e(s) ≥ e, otherwise there are no such maps. In particular there are maps
∗e → ∗e′ if e > e′.

Definition 2.10. A map f : X → Y is an isomorphism if there exists g : Y →
X so that fg = 1Y , gf = 1X . If such a g exists, it is necessarily unique and
we denote it f−1. It is called an inverse of f . If there exists an isomorphism
X → Y , we write X ∼= Y and call them isomorphic.

Example 2.11.

1. An isomorphism of sets is a bijection.

2. In BG, all the maps are isomorphisms (with inverses given by inverses in
the group).

3. An isomorphism of groups is precisely what’s normally called a group
isomorphism — a bijective group homomorphism (the inverse is automat-
ically a homomorphism).

4. An isomorphism in Met is not the same thing as a bijective short map
— instead, it is a bijective isometry, i.e a bijection where d(f(x), f(y)) =
d(x, y).

5. An isomorphism in Err is a bijective error-preserving map f , i.e one with
e(f(x)) = e(x) for all x.

One of the guiding principles in category theory is that objects which are
isomorphic should be interchangable — a property or construction which does
not respect isomorphisms is sometimes said to be evil.

Example 2.12. Let Prob∗ be the category where objects are probability spaces,
and maps are equivalence classes of measure-preserving maps under the relation
of almost-certain equivalence2. Then a map f is an isomorphism if it has a

2For this to make sense, we actually have to verify that a.e. equality is preserved by
composition. To see this, note that {x | fg(x) 6= f ′g′(x)} ⊆ {x | g(x) 6= g′(x)} ∪ g−1({y |
f(y) 6= f ′(y)}). If two compositions differ at x, either the first functions differ there, or the
latter functions differ at g(x). Then we just note that these two sets are null and g is by
assumption measure-preserving.
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measurable “almost certain inverse”, i.e so that ff−1(y) = y for almost all y,
and f−1f(x) = x for almost all x.

If (X , P ) is a probability space, and E ⊆ X is measurable with probability
1, then the inclusion (E,P |E) ↪→ (X , P ) is an isomorphism in this category —
reflecting the intuition that sets of probability 0 “don’t matter”.

Example 2.13. Let Met be as above, and let Metc denote the category of metric
spaces and continuous maps. There is an obvious inclusion functor Met→ Metc

(since any Lipschitz map is continuous). This of course implies that isometrically
metric spaces are isomorphic in Metc. But the converse is not true — metric
spaces which are isomorphic in Metc are merely homeomorphic. For example,
the open interval (0, 1) and the real line R (both in the usual metric) are known
to be homeomorphic, by the map x 7→ tan(xπ − π/2), but they are obviously
not isometric.

This example shows that the requirement that “isomorphic objects are in-
terchangable” is largely a matter of perspective — it depends on what notion of
morphism you’re considering! This also motivates the collection of 1-Lipschitz
functions as the “correct” notion of transformation between metric spaces — it
ensures that isomorphic metric spaces really have “the same” metric.

(We could also have chosen, for example the collection of all Lipschitz mor-
phisms. This would lead to metric spaces where isomorphic metric spaces have
“equivalent” metrics, in the sense that

cdX(x, x′) ≤ dY (f(x), f(x′)) ≤ CdX(x, x′),

for all x, x′ ∈ X and for some positive constants c, C. But this is not what we’re
interested in here.)

Example 2.14. Given a category with one object (call it ∗), and where each
map is an isomorphism, the set Hom(∗, ∗) acquires the structure of a group,
with multiplication given by composition. This is an inverse to the construction
BG discussed above.

Definition 2.15. Let C be a category. Then the opposite or dual category,
denoted Cop, is defined by reversing the arrows of C. Formally, obCop = obC,
but Cop(A,B) = C(B,A). Composition is the same as composition in C, but
with the arguments reversed.

2.1 Functors

Since the whole idea of category theory is that often the transformations between
objects are as important as the objects themselves, it’s natural to apply this idea
to categories. The structure-preserving transformation between categories are
called functors.

Definition 2.16. Let C,D be categories. A functor F : C→ D consists of

1. A function F : obC→ obD
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2. For each pair of objects X,Y ∈ C, a function C(X,Y ) → D(FX,FY ),
which we also denote by F .

3. So that F (1X) = 1FX and F (fg) = F (f)F (g).

In a sense, a functor is a lot like a group homomorphism — it must preserve
the composition law and the identities of the category. Another way of thinking
about functors is that they are precisely those maps between categories which
preseve commutative diagrams like Eq. (1)

Example 2.17. There is a functor U : VectR → Set which assigns a vector
space its underlying set, and a linear map its underlying function. Functors of
this form, which “forget” the structure of some object, are often called forgetful
functors. There are for example also forgetful functors Met→ Set, Grp→ Set.

Example 2.18. Let G be a group. A functor A : BG → Set consists of this
data:

1. A set A(∗)

2. For each group element g, a function A(g) : A(∗)→ A(∗)

3. Such that A(1) = 1A(∗), and A(gg′) = A(g)A(g′).

If you stare at this for a bit, it’s clear that this is exactly the data of a set with
a (left) action of G. Similarly, a functor BG→ VectR is precisely the data of a
vector space with a linear action of the group G (i.e a representation of G). In
general, it makes sense to think of a functor BG→ C as an object of C equipped
with an “action” of G.

Example 2.19. Given any object X ∈ C, the construction Y 7→ C(X,Y )
defines a functor C → Set. Functors of this form are called representable. We
also denote this functor C(X,−)

Remark 2.20. We will in general use the notation “−” for an “anonymous”
variable. For example, we let f(x,−) denote the function y 7→ f(x, y), and so
on.

Example 2.21. Let Ω = (Ω, P ) ∈ Prob be a background probability space.

1. Prob(Ω,−) is a functor which sends a probability space to the set of ran-
dom variables with that distribution. For instance, Prob(Ω, (R,N (0, 1)))
is the set of standard Gaussian random variables. (If we use notation
in a slightly unorthodox way and let N (0, 1) denote the measure on R
corresponding to the standard Gaussian).

2. There is also a functor RVΩ : Meas→ Set which takes a measurable space
to the set of random variables valued in that space, quotiented by the
equivalence relation of P -almost certain equality. A measurable function
f : X → Y is taken to the operation X 7→ f(X) on random variables.
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Example 2.22. Let Prob∗ again be the category of probability spaces and a.e.
equivalence classes of measure-preserving maps. A functor BZ→ Prob∗ consists
of

1. A probability space (Ω, P )

2. Equipped with measure-preserving operations Tn : Ω→ Ω for each n ∈ Z

3. So that T 0 = 1Ω almost-surely and TnTm = Tn+m almost surely.

It’s clear that every Tn is determined uniquely (up to almost sure equivalence)
by the choice of T 1, and also that T 1 can be any almost-surely invertible and
measure-preserving transformation (the inverse is given by T−1). Hence this is
the same thing as a probability space equipped with an almost-surely invertible,
measure-preserving transformation. This is essentially a measurable discrete-
time dynamical system, where P is an equilibrium distribution.

Example 2.23. A functor BG→ BH, for two groupsG,H, is the same thing as
a group homomorphism G→ H — there is only one possible function obBG→
obBH, and the condition on the map BG(∗, ∗)→ BH(∗, ∗) is precisely that it
defines a group homomorphism.

Definition 2.24. There are two important functors Err→ Set. The first, which
we will denote ex, takes an error space S to the set of elements with error 0.
In other words, ex(S) = {s ∈ S | e(s) = 0}. Given a morphism f : S → S′,
ex(f) is simply the restriction of f to ex(S) (which, by assumption, has image
contained in ex(S′)).

The second, which we will denote |−|, simply forgets the error, so that
|(S, e)| = S and |f : S → S′| = f .

Remark 2.25. In fact, ex ∼= Err(∗,−), and |−| ∼= Err(∗∞,−) (as in definition
Definition 2.9)

Remark 2.26. Any functor preserves isomorphisms — specifically, F (f−1) is
an inverse of F (f). In this sense a construction which is functorial is “not evil”.

Definition 2.27. A functor is full if each map C(X,Y ) → D(FX,FY ) is sur-
jective. It is faithful if each map C(X,Y )→ D(FX,FY ) is injective. A functor
which is full and faithful is called fully faithful.

Example 2.28. The forgetful functor Grp → Set is obviously faithful, since
group homomorphisms are equal if and only if they are equal as functions —
a group homomorphism does not involve any extra data than a function. It is
not full, since there are obviously functions between the underlying sets that
are not group homomorphisms (outside of trivial cases like maps into {∗}).

Example 2.29. The functor |−| : Err → Set is faithful, but not full. The
functor ex : Err→ Set is not faithful or full. It is not faithful because two maps
f, g : S → T may differ, but agree on those points with error zero. It is not full
because, if S = ∗1, T = ∗2, there are no maps S → T , but there is one map
ex(S) = ∅ → ex(T ) = ∅.
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Remark 2.30. Given a fully faithful functor F : C → D, we may treat C as a
“subcategory” of D, consisting of a certain subset of the objects, but having the
same morphisms and composition. Interestingly, we can do this even if F is not
injective on objects, because if F (X) = F (Y ), then the preimage in C(X,Y ) of
1F (X) : F (X) → F (Y ) is an isomorphism, so X ∼= Y . (In other words, a fully
faithful functor is necessarily injective on isomorphism classes of objects.)

There is also a notion of transformation between functors:

Definition 2.31. Let F,G : C → D be functors. A natural transformation
α : F → G is a collection of maps αX : FX → GX for each X ∈ C, such that
for each arrow f : X → Y in C, the diagram

FX FY

GX GX

αX

F (f)

αY

G(f)

commutes.
The category of functors C → D and natural transformations is denoted

[C,D].

Example 2.32. Let U : VectR → Set be as in Example 2.17. For any α ∈ R,
the map v 7→ αv is a natural transformation U → U . To see this, note that by
definition, this means that for any linear map f : V → W , we have αf(v) =
f(αv), which is part of the definition of linearity.

Example 2.33. For any group G, the category [BG, Set] is isomorphic to the
category GSet of G-sets, in the sense that there is a functor [BG, Set] → GSet
which has an inverse. This functor is essentially given by the construction of
example Example 2.18

Example 2.34. Fix a background probability space (Ω, P ). Then there is
a functor RV 1 : VectR → Set which takes a real vector space V to the set of
random variables with finite expectation valued in V (using the Borel σ-algebra),
and takes a linear transformation f to the map X 7→ f(X). There is also a
forgetful functor U : VectR → Set from Example 2.17. Then the expectation E :
RV 1(V )→ U(V ) is a natural transformation. This just reflects the well-known
fact that linear transformations preserve expectation — E[f(X)] = f(EX) when
f is linear.

We have the following very important result about representable functors:

Proposition 2.35. The assignment X → C(−, X) defines a functor y : C →
[Cop,Set], which is moreover fully faithful.

This is a consequence of the celebrated Yoneda lemma, and the functor y
is called the Yoneda embedding. The utility of this result is that the category
[Cop,Set] is usually much more well-behaved than the base category C, and the
Yoneda embedding allows us to work in the larger category instead.
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Lemma 2.36 (Yoneda). Let C be a category, F : Cop → Set be any functor,
and let X ∈ C be an object. Then F (X) ∼= [Cop,Set](C(−, X), F ).

To prove the proposition, simply apply the lemma in the case F = C(−, Y ).
See e.g. [20, Thm. 2.2.4] for a proof.

Functors Cop → Set are called presheaves on C

Remark 2.37. Essentially, we can see the Yoneda lemma as saying

1. A presheaf F : Cop → Set is a sort of generalized object of C (in the sense
that the presheaves contain the objects as a full subcategory).

2. To map from an object of C into a generalized object, you simply apply
the functor that is the generalized object.

2.2 Monoidal categories and string diagrams

We will make use on several occasions of the graphical notation called string
diagrams. Here is an example of a string diagram.

g

h

R R

R R

u

(2)

The meaning of this diagram is fairly clear — it shows how to build a com-
posite function by “wiring together” functions. g is some function R2 → R2,
for example g(x, y) = (x + y, (x− y)

2
), and h is some function R2 → R, say

h(a, b) = a · b, while u is a function {∗} → R — which is the same thing as an
element of R, say 5. Note that this diagram is oriented “bottom to top” — the
domain of a map is at the bottom, and the codomain at the top. We use this
convention throughout.

It does not, in general, make sense to wire together maps in a general cate-
gory like this. This is because a category does not come with a built-in notion of
“multivariate morphism”. The simplest way to add this structure to a category
is C to add a “product”, ⊗ : C× C→ C. Then we can think of a “morphism in
two variables” as a map A⊗B → C, and so on3.

To intepret things like u, we must further have a notion of element, or zero-
variable operation. This is provided by specifying a unit object, usually denoted
I ∈ C.

3There are other approaches to this, where the notion of morphism with multiple inputs
is taken as primitive. These are usually called something like multi- or polycategories, see
eg [11]
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This data, ⊗ and I, must satisfy a number of conditions which ensure that
the interpretation of diagrams like Equation (2) is well-defined — ⊗ must be a
functor, be associative, I must be a unit up to natural isomorphism, and satisfy
the so-called coherence axioms. See [15, Chap. 7] for a technical treatment. A
category equipped with data like this is called a symmetric monoidal category.

〈·, ·〉

·

W

V V W

(3)

This diagram depicts a map in vector spaces, which takes the inner product of
two vectors and scales a third vector by it. This is a multilinear map, which
means it’s a map V ⊗V ⊗W →W 4, and not a map V ×V ×W →W . In other
words, this is a diagram in the symmetric monoidal category (VectR,⊗,R).

·/2

f

Z

Z

Z{odd}
(4)

This diagram depicts a function of sets, but in an unusual way. The function
·/2 halves an integer if it is even, but “returns an error” if it’s odd. Hence
it’s a function Z → Z t {odd}, where t denotes the “disjoint union” of sets5.
Then the function f : Zt{odd} → Z handles this error in some way (it doesn’t
really matter — let’s say f(odd) = 0). This diagram can be interpreted in a
symmetric monoidal category (Set,t, ∅). The two paths through the diagram
show the two possible ways the function can be evaluated, depending on the
input.

This example shows that we can often put multiple distinct monoidal struc-
tures on a category — this choice reflects a decision about what it should mean
for a function to be “multivariate”. In (Set,×, {∗}), it means that it takes in a
pair of values. In (Set,t, ∅), it means that it takes in a value from one of two
possible sets. In both (VectR,⊗,R) and (VectR,×, 0), a multivariate morphism
can be said to accept two variables — in the former, it must be bilinear, while
in the latter, it must be simply linear.

4Here, the ⊗ symbol denotes the usual tensor product of vector spaces
5The normal union ∪ is an evil operation — A ∼= B does not imply A ∪ C ∼= B ∪ C
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In the presence of a symmetric monoidal structure, we can also make sense
of “function spaces”.

Definition 2.38. Let (C,⊗, I) be a symmetric monoidal category. Let X,Y ∈ C
be objects. We say that [X,Y ] is a hom object6 for X and Y if there is a natural
isomorphism

C(−⊗X,Y ) ∼= C(−, [X,Y ])

of functors Cop → Set.

It turns out that hom objects, if they exist, are unique up to isomorphism,
so that we can reasonably speak of the hom object [X,Y ].

Definition 2.39. A symmetric monoidal category is closed if all hom objects
exist.

Remark 2.40. The coincidence between our notation for hom objects and
functor categories is no coincidence — there’s a symmetric monoidal “category
of categories”, Cat, so that the functor category is the hom object.

Example 2.41. The category (Set,×, ∗) is closed, and [X,Y ] is the set of
functions X → Y .

Definition 2.42. The tensor product X ⊗ Y of two metric spaces is their
Cartesian product equipped with the `1-metric: d((x, y), (x′, y′)) = d(x, x′) +
d(y, y′). This equips the category of metric spaces with a symmetric monoidal
structure, with unit the singleton metric space.

See [6] for a proof of this.

Definition 2.43. The tensor product of two error spaces is defined by S⊗S′ =
S × S′ and dS⊗S′(s, s

′) = dS(s) + dS′(s
′). The function space, written [S, S′]

is the set of all functions f : S → S′, with e(f) = max(0, sups e(f(s)) − e(s)).
This defines a closed monoidal category Err. The monoidal unit is ∗0.

Proposition 2.44. The above definitions equip Err with the structure of a
closed monoidal category.

Proof. We first verify that (Err,⊗, ∗0) is a symmetric monoidal category. This
consists of the following claims:

1. ⊗ defines a functor Err × Err→ Err

2. There exists natural isomorphisms σX,Y : X⊗Y ∼= Y ⊗X, ηX : X⊗{∗} ∼=
X, and αX,Y,Z : X ⊗ (Y ⊗ Z) ∼= (X ⊗ Y )⊗ Z

3. These natural isomorphisms satisfy the MacLane coherence axioms.

6for “homomorphism”
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This part of the proof is entirely routine.
Given maps f : X → X ′ and g : Y → Y ′, the map (f ⊗ g) : X ⊗ Y →

X ′ ⊗ Y ′ is simply defined by f ⊗ g(x, y) = (f(x), g(y)). In other words, on
morphisms the functor ⊗ simply acts as the functor × : Set × Set → Set. The
natural isomorphisms are similarly lifted from the symmetric monoidal structure
(Set,×, {∗}):

ηX(x, ∗) = x

σX,Y (x, y) = (y, x)

αX,Y,Z(x, (y, z)) = ((x, y), z)

A routine calculation suffices to verify that these formulae do in fact define
natural isomorphisms of error spaces, and to verify the coherence axioms.

To prove that the function space as defined above defines a closed structure,
it suffices to verify the adjunction — that is, to check that

Err(X, [Y,Z]) ∼= Err(X ⊗ Y, Z).

If we drop the requirement of being a map of error spaces on both sides, we
clearly have a bijection between functions X → [Y, Z] and X ⊗ Y → Z, where
the map f(x, y) corresponds to the map x 7→ f(x,−). We must verify that
this correspondence preserves the property of being error nonincreasing, in each
direction. Suppose f : X ⊗ Y → Z is error nonincreasing. This means that
e(f(x, y)) ≤ e(x) + e(y). Now take the map f(x,−) ∈ [Y, Z]. By the inequality
above, e(f(x, y))− e(y) ≤ e(x) for all y, so that map has error at most e(x) —
meaning that the map X → [Y,Z] is error nonincreasing.

For the opposite direction, suppose f : X → [Y, Z] is error nonincreasing.
Then e(f(x)(y))− e(y) ≤ e(x) for all x, y, but that means e(f(x)(y)) ≤ e(y) +
e(x), as desired.

Remark 2.45. Observe that the error of a function f ∈ [X,Y ] can be infinite,
even if all elements of both X and Y have finite error. This is one big technical
advantage of allowing infinite errors — the category of error spaces would not be
closed if we did not. We will also see later (Lemma 2.65) that this is necessary
in order for Err to have all limits and colimits.

2.3 Enriched categories

An enriched category is like a category, but where the morphism sets C(X,Y )
carry some extra structure. For instance, the set of linear maps between two
vector spaces, VectR(V,W ), can itself be endowed with the structure of a (real)
vector space (by pointwise operations). Then we say that VectR is enriched
in VectR (it’s quite common for categories to be enriched in themselves). In
general, a category C is enriched in another category V if each morphism set
C(X,Y ) carries the structure of an object of V, and the composition respects this
structure (for instance, composition of linear maps is bilinear). This definition
is somewhat vague — a precise definition is a bit subtle, and requires a more
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precise treatment of monoidal categories. We will spell out what an enriched
category is in each of the cases that we need it. See [8] for a comprehensive
treatment of enriched categories.

Example 2.46.

1. A category “enriched in Set” is just an ordinary category.

2. A category enriched in (VectR,⊗,R) has vector spaces of maps, with com-
position bilinear (the identity is a linear map 1A : R → C(A,A), which
can be identified with the value 1A(1))

3. A category enriched in Fin is a category where every morphism set is finite.

4. A category enriched in Meas is a category where every morphism set carries
a σ-algebra, so that composition is a measurable operation.

Remark 2.47. A Met-category consists of the following data:

1. An ordinary category C,

2. with a metric on each mapping set C(X,Y ),

3. such that the compositions C(X,Y )×C(Y, Z)→ C(X,Z) are short in each
variable, i.e d(fg, fg′) ≤ d(g, g′) and d(fg, f ′g) ≤ d(f, f ′).

The idea here is that we can control the distance between composite morphisms
in terms of the distances between their components.

Readers should feel free to regard this as the definition of a Met-enriched
category.

The following lemma will be useful later — it tells us how to compose “almost
commutative” squares.

Lemma 2.48. Let C be a Met-category and consider a diagram of this form
(not necessarily commutative):

A A′

B B′

C C

a

f f ′

b

g g′

c

Suppose d(f ′a, bf) = ε and d(g′b, cg) = δ. Then d(g′f ′a, cgf) ≤ ε+ δ.

Proof. By Remark 2.47, we have

d(g′f ′a, g′bf) ≤ ε
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d(cgf, g′bf) ≤ δ

Now we apply symmetry and the triangle inequality for the desired conclusion.

Remark 2.49. An Err-category consists of the following data.

1. An ordinary category,

2. with an error e(f) for each morphism f : X → Y ,

3. such that e(fg) ≤ e(f) + e(g).

Similar to the case of Met-categories, the idea of an Err-category is that we can
control the error of a composite morphism in terms of the component morphisms.

An Err-functor is a functor which does not increase the error of morphisms,
i.e e(F (f)) ≤ e(f) for any morphism f .

Given two Err-categories C,D, there is an Err-category of Err-functors [C,D].
The objects are Err-functors C → D. The morphisms are natural transforma-
tions. The error of a natural transformation α is e(α) = supX∈C e(αX).

Again, readers should feel free to regard the above as definitions on a first
reading.

Definition 2.50. Given an Err-category C, we obtain a subcategory Cex of
exact morphisms. Its objects are the same as C, and its morphisms are those
morphisms in C with error zero.

Remark 2.51. Cex is just the “underlying category” of C, in the sense of
enriched category theory, usually denoted C0 (see eg [8, section 1.3]). The
construction (−)ex has a left adjoint, which equips an ordinary category with
the Err-enrichment where e(f) = 0 for all f . This has a further left adjoint,
which we might call the inexact category, which simply forgets the errors of all
the morphisms — we could reasonably denote this functor |(−)|.

Definition 2.52. Define the Err-category Err as follows:

1. The objects are the error spaces.

2. A map S → S′ is any function S → S′.

3. Composition is just ordinary function composition.

4. The error of a map f : S → S′ is max(0, supx e(f(x))− e(x))

In other words, Err(X,Y ) = [X,Y ].

Observe that Errex = Err. For this reason we think of Err as the “canonical”
enrichment of Err in itself. (It may perhaps seem a bit strange that the morphism
sets of Err contain a large number of functions that aren’t in Err, but from the
point of view of enriched categories, this is actually natural). Since there is
usually no chance of harmful confusion, we will often abuse notation and use
the symbol Err for the enriched category as well, omitting the underline.
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Remark 2.53. All the technology we have developed so far also works for
enriched categories. That is, there is a notion of enriched functor, which is
the same as an ordinary functor except the maps C(X,Y ) → D(FX,FY ) are
maps in the enriching category. There is an enriched functor category (which
we simply denote [C,D]), and an enriched Yoneda lemma.

2.4 Limits

We now discuss the construction known as a limit. A limit is a way of defining
a new object in a category in terms of “smaller” objects. The simplest example
is the so-called product

Definition 2.54. Let X,Y ∈ C be objects of a category. A product of X and Y
consists of a third object P equipped with two maps πX : P → X,πY : P → Y ,
with the following “universal” property: given a fourth object Z and maps
f : Z → X, g : Z → Y , there is a unique map (f, g) : Z → P such that the
following diagram commutes

Z

P X

Y

Proposition 2.55. Given two products (P, πX , πY ) and (P ′, π′X , π
′
Y ), there is

a unique isomorphism i : P → P ′ so that πX = iπ′X , πY = iπ′Y .

Proof. Apply the universal property for P ′ to the maps πX , πY to construct i.
Apply the universal property for P to the maps π′X , π

′
Y to construct j : P ′ → P .

The uniqueness in the statement implies that ij = 1P ′ and ji = 1P .

Since products are unique (up to isomorphism), we usually talk about “the”
product of two objects, and denote it X × Y .

Example 2.56. In Set, the product of two sets X,Y always exists and equals
the usual Cartesian product X×Y , with πX(x, y) = x, πY (x, y) = y the ordinary
projections. Given f : Z → X, g : Z → Y , the induced unique map Z → X × Y
is simply z 7→ (f(z), g(z)).

The idea behind the definition of product is that it generalizes this concept
to other categories. The two projections in the product pick out the two “coor-
dinates”, and the universal property ensures that the product is entirely given
by the two coordinates, in some sense.

The idea of a “limit” is to generalize this to more complicated systems of
objects than just a pair. In general, the input to a limit is a “diagram”, which
in fact just means a functor D : I→ C from some other “index” category I. The
limit of such a thing is the “universal” object with a map L → D(i) for each
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i ∈ I which is compatible with all the maps D(f) : D(i) → D(j). Here is how
to make this precise:

Definition 2.57. Given a functor D : I → C, a limit consists of an object L
equipped with maps πi : L→ D(i) for each i, so that all the triangles

L

D(i) D(j)
D(α)

commute, for each α : i → j in I. Furthermore L must be universal, in the
sense that given another such compatible collection (Z, fi : Z → D(i)), there is

a unique map f̂ : Z → L such that fi = πif̂ .

One can prove, in a way completely analogous to the previous proof, that
limits are unique up to unique isomorphism if they exist. For that reason we
often speak of “the” limit, denoted limi∈ID(i), or just limD. We recover the
case of products by choosing for I the category with two objects and only identity
morphisms.

Example 2.58. If I is the empty category, with no objects, there is a unique
functor I→ C (for any category C). An object T ∈ C is a limit of this diagram
if and only if, for each other object X ∈ C, there is a unique map X → T . Such
an object T is called terminal.

For example, a terminal object of Set is precisely a singleton set.

Example 2.59. If I is the category with three objects, a, b, c, and two noniden-
tity morphisms, a→ b and c→ b, a diagram D : I→ C looks like this

A

B C

(where A = D(a) and so on). A limit of this diagram is an object P equipped
with maps P → A,P → B, such that

X

P A

B C

1. The inner square above commutes

2. Given any X equipped with maps X → A,B so that the outer cell com-
mutes, there exists a unique map X → P making the whole diagram
commutative.

19



Such a limit P is called a pullback, and typically denoted A×C B

Example 2.60. If I = BG for some group G, recall that a functor A : BG→ Set
is the same thing as a set A(∗) with an action of G. The limit limA is the set
of fixpoints of the action, i.e those a ∈ A(∗) so that g.a = a for all g ∈ G.

In the enriched case, things get significantly more complicated. In general,
one has to deal with something called “weighted limits”. However, we can
simplify things significantly in the case of Err-categories, which is the only case
of interest.

Definition 2.61. Let C and I be Err-categories. Let D : I → C be a functor,
and let W : I → Err be a functor with W (i) a singleton for each i. The data
of such a functor amounts to specifying the error eW (i)(∗), which we denote
ei (this is subject to certain conditions, coming from the functoriality). Then
a W -weighted limit of D is a universal object L ∈ C, equipped with maps
πi : L → D(i), with e(πi) ≤ ei. Here “universal” is taken to mean that, given
another such object (Z, fi), there is a unique exact morphism Z → L making
the diagrams commute.

The concept of weighted limit makes sense for a general functor W : I→ Err,
with a significantly more complicated definition. However we will show in the
following section that this generality is redundant in our situation. The purpose
of the “weights” W (i), in this situation, is just to specify the error that should
be allowed on the maps πi — this is a necessary part of pinning down the
universal object up to exact isomorphism. In concrete examples, we’ll generally
only be concerned with limits that are “exact”, i.e those where W (i) = ∗0 for
all i and where all the morphisms of I are exact. In this case a weighted limit is
the same thing as a limit in the category Cex.

One class of limits is particularly important to us: the so-called cofiltered
limits. Being “cofiltered” is actually a property of the index category:

Definition 2.62. A category I is cofiltered if

1. There is at least one object of I

2. Given any two objects x, y ∈ I, there exists an object z and maps z →
x, z → y.

3. Given any two parallel arrows f, g : x→ y, there exists an arrow h : z → x
so that fh = gh.

A “cofiltered limit” is just a limit of a functor from a cofiltered category.
Cofiltered limits have certain theoretical properties that make them convenient.
A simple example of a cofiltered category is the category (Z,≤). A functor from
this category looks like a sequence of objects

· · · → X−1 → X0 → X1 → · · ·
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Taking the limit of this diagram is in some sense like taking the limit of Xn as
n→ −∞7.

Example 2.63. Given a nonincreasing Z-indexed sequence xn ∈ [0,∞], we
obtain a functor ∗x(−)

: (Z,≤)→ Err. The limit of this sequence is

∗limn→∞ xn = ∗supn xn .

In the Err-enriched case, we need an additional consideration of the weights.
This turns out to be fairly simple: the weights W (i) need to contain arbitrarily
small (but not necessarily zero) errors. This is a slightly strange condition, which
I don’t know exactly how to think about. In the cases of interest, all the errors
are zero, so this is not an issue. The technical term for this type of W is flat —
we will later encounter this term in the definition of profinite models. There are
deep reasons for this “coincidence”, but they’re probably beyond this level of
explanation. We record the upshot of this discussion precisely for convenience:

Remark 2.64. A functor W : I → Err where W (i) is a singleton for each i is
flat if and only if I is cofiltered in the usual sense, and the infimum of errors
infi eW (i)(∗) = 0. A cofiltered limit in an Err-category is a limit weighted by a
flat functor.

2.5 Limits in Err-categories

We now study several properties of weighted limits in Err-enriched categories.
This section is written assuming significant familiarity with the theory of en-
riched categories, weighted limits and so forth. The standard reference for that
topic is [8]. The goal is to show

1. That Err has sufficiently good properties for the theory of enriched flat
functors, developed in [1], to apply. This is contained in Lemma 2.65 and
the subsequent definitions.

2. That finite weighted limits can, as normal, be built out of pullbacks and
a terminal object. This is Lemma 2.74.

3. That enriched left Kan extensions interact nicely with finite limits. This
is Proposition 2.76.

These are the results necessary to understand the profinite models of Section 5.

Lemma 2.65. Err has all limits and colimits. Moreover, the underlying set
functor Err→ Set preserves both limits and colimits.

Proof. It suffices to prove this for products, coproducts, equalizers and coequal-
izers. Let two parallel arrows A ⇒ B in Err be given. Let i : S → A be the
equalizer of this diagram in Set. Equip S with an error structure by setting

7This is where the terminology “limit” comes from
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e(s) = e(i(s)). Then one easily checks that this has the universal property of
an equalizer in Err.

On the other hand, let p : B → Q be the coequalizer in Set. Equip Q with
an error structure by setting e(q) = infp(b)=q e(b). Then this is again easily seen
to have the universal property of a coequalizer in Err.

Let {Ai}i∈I be a family of objects of Err. Equip the product
∏
iAi with the

error structure e((ai)) = supi eAi(ai). Then one easily checks that this satisfies
the universal property of a product. Equip the disjoint union

∐
iAi with the

error structure e(a) = eAi(a) when a ∈ Ai. Then one can, again, check that
this has the right universal property.

It is clear from this construction that the underlying set functor preserves
all limits and colimits.

Definition 2.66. An Err-category D is finite if the underlying category |D| is
finite, i.e has finitely many objects and morphisms. A finite limit or colimit in
an Err-category is a (co)limit weighted by a functor W : D → Err, where D is
finite and each weighting set W (d) ∈ Err is a finite set.

Remark 2.67. Observe that infinite colimits of spaces with finite error may
have points of infinite error. For example, the colimit of the digram ∗ ↪→ ∗1 ↪→
∗2 ↪→ . . . is ∗∞.

We now turn to weighted limits and colimits in Err-categories. Our first result
shows that we may replace any such (co)limit with one where each weight is a
singleton. Thus, the additional information of a weight reduces to associating
an error with each object of the diagram.

Proposition 2.68. Given any Err-category I with a weight W : I→ Err, there
is a replacement I′,W ′ : I′ → Err, equipped with a functor a : I′ → I and a
natural transformation α : W ′ → aW , such that for any Err-category C and any
functor D : I→ C,

colimW
i∈ID(i) ∼= colimW ′

i∈I′ D(a(i)),

in the sense that if either of these colimits exists, the other one does, and the
canonical map is an exact isomorphism.

Proof. We simply obtain I′ as the category of elements of W — an object in I′

is a pair (i ∈ I, x ∈W (i)), and a map (i, x)→ (i′, x′) is a map f : i→ i′ so that
W (f)(x) = x′ — the error of such a map is just the error of f in I. The functor
a : I′ → I is simply the obvious forgetful functor. The weighting W ′ : I → Err
takes (i, x) to ∗e(x), where e is the error on W (i). The natural transformation
α : W ′ → aW takes ∗ ∈ W ′(i, x) to x ∈ W (a(i, x)) = W (i). It is essentially
obvious that the universal property of the two colimits are the same, giving the
desired result.

(Of course, by duality, the analogous result holds for limits)
Now we describe weighted limits and colimits in Err itself.
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Proposition 2.69. Let W : I→ Err be a weighting functor, and let D : I→ Err
be any (enriched) diagram. Suppose |W (i)| is a singleton for each i ∈ I. Then
the weighted limit limW D is given by the following

1. As underlying set,
∣∣∣limW D

∣∣∣ = limi|D(i)|, the limit computed in sets.

2. The error function is given by

e((xi ∈ |D(i)|)i∈I) = max(0, sup
i
eD(i)(xi)− eW (i)(∗))

If W : Iop → Err, D : I → Err are as before, then the weighted colimit
colimW D is given by

1. As underlying set,
∣∣∣colimW

∣∣∣ = colim|D(i)|, the colimit computed in sets.

2. The error function given by

e([x ∈ D(i)]) = inf
j,x′∈D(j),x′∼x

eD(j)(x
′) + eW (j)(∗)

In other words, the error of an equivalence class [x] in the colimit is the
infimum of the value eD(j)(x

′)+eW (j)(∗) over all representatives x′ ∈ D(j)
of the equivalence class.

Proof. Both statements follow immediately from writing out the universal prop-
erty. Let’s see this in a bit more detail.

The universal property of the described limit says that a map f : X →
limW D is equivalent to a family of maps fi : X → D(i), compatible with the
maps D(i) → D(j). Clearly the described set has this property. The error on
the morphism space Err(X, limW D) described by the universal property says
that, under the above correspondence,

e(f) = max(0, sup
i

(e(fi)− eW (i)(∗))).

Again, it’s clear that this is the same error function we get if we put the error
described in the proposition on limW D.

The result about colimits follows in the same way, by considering the uni-
versal property coming from the weighted colimit.

Definition 2.70. An object X of an Err-category C is terminal if, for each other
object Y , there is a unique morphism Y → X, and that morphism is exact.

Definition 2.71. Let C be an Err-category and consider this diagram

A

B C

f

g
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Suppose e(f) = ε, e(g) = ε′ This diagram depicts a functor from the category
Pε,ε′ to C, where Pε,ε′ is the Err-category of this shape:

•

• •
ε

ε′

(Where the edge labels denote the errors). A pullback of the diagram above
is a limit of this diagram weighted by a functor W : Pε,ε′ → Err, where each
W (−) is a singleton. A pullback is exact if each weight W (−) is the terminal
object ∗.

The point of this definition is that a pullback may be a non-conical limit —
i.e, we may specify some specific nonzero error tolerance on the universal maps
into the pullback.

Definition 2.72. Let C be an Err-category. A product is a limit weighted by
W : D→ Err, where D has no morphisms and each W (−) is a singleton.

Lemma 2.73. If an Err-category has pullbacks and a terminal object, it also
has finite products and equalizers.

Proof. Finite products may be constructed in the usual way from terminal ob-
jects and binary products. Moreover, the pullback A ×∗ B is easily verified to
have the same universal property as the binary product A×B, regardless of the
weights.

An equalizer of f, g : A ⇒ B is the same thing as a pullback A ×A×B A,
with the two maps A → A × B being given respectively by (1A, f) and (1A, g)
(with the weights being all zero in this case).

Lemma 2.74. An Err-category has finite limits if and only if it has pullbacks
and a terminal object. A functor preserves these limits if and only if it preserves
the terminal object and pullbacks.

Proof. The forward direction of both statements is obvious, since pullbacks and
terminal objects are special cases of finite limits.

Let W : I → Err be a functor from a finite Err-category, with W (i) a finite
set for all i ∈ I. Let D : I→ C be another Err-functor. Unwinding the definition,
a W -weighted limit of D consists of an object L ∈ C, equipped with maps
W (i) → C(L,D(i)) for each i, so that the natural diagrams commute, and so
that given another such object L′, there is a unique map L′ → L with error 0
making all the diagrams commute.

This is the same universal property as an equalizer of the two parallel mor-
phisms ∏

i∈I,x∈W (i)

D(i)
f

⇒
g

∏
ϕ:i→j∈I,x∈W (i)

D(j)

where
f((aix)i∈I,x∈W (i)) = (D(ϕ)(aix))ϕ:i→j,x∈W (i)
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g((aix)i∈I,x∈W (i)) = (ajW (ϕ)(x))ϕ:i→j,x∈W (i)

so it suffices that the category has equalizers and finite products. This is a
direct consequence of the assumptions and Lemma 2.73.

An analogous argument shows the claim about functors: a cone is a limit
cone if and only if the induced map into the expression of the limit as an
equalizer of products is an isomorphism. Hence it suffices to show that the
functor preserves equalizers and finite products. The expression of these in
terms of pullbacks and the terminal object, and the fact that it preserves these,
establishes the claim.

Lemma 2.75. In the category [Cop,Err], pullbacks preserve colimits, in the
sense that A×B colimi Ci ∼= colimiA×B Ci.

Note that in the notation above, we have suppressed the weights.

Proof. This is true for Err by applying Proposition 2.69 and writing out the
resulting error sets. It follows for functor categories since (weighted) limits and
colimits in such are computed pointwise.

Proposition 2.76. Let f : C→ Err be an Err-functor, and let F : [Cop,Err]→
Err be the left Kan extension, i.e the unique colimit-preserving Err-functor with
F (yX) = f(X). Then F preserves finite limits if and only if it preserves pull-
backs of representables and the terminal object.

The following proof is essentially a rewriting of [13, prop. 6.1.5.2] to our
case. It is quite likely that a form of this result already exists in the literature
for enriched categories, but we were unable to find it.

Proof. For convenience, we introduce the notation P := [Cop,Err]. Note that a
pullback of representables yA ×yC yB is not necessarily itself representable —
this is the case if and only if C has pullbacks itself. It suffices by Lemma 2.74 to
show that F preserves all pullbacks and the terminal object — the latter it does
by assumption, so it suffices to verify that it preserves pullbacks. Let a map
X → Y in [Cop,Err] be “good” if F preserves pullbacks of the form X ×Y Z.
(Note that we are not restricted to exact maps).

First, we claim that all maps between representables A → B are good.
Note that pullbacks preserve colimits by Lemma 2.75, and every object of P
is a colimit of representables. Since F also preserves colimits, and pullbacks of
representables, it preserves every pullback of the form A ×B X. So A → B is
good.

Now let’s say an object B ∈ P is good if every morphism A → B is good.
By repeating the above argument, we see that an object is good as long as
every morphism yA → B from a representable is good. It follows that every
representable is good, since we already saw that every map yA→ yB was good.

Now we wish to show that every object is good. It suffices to show that the
class of good objects is stable under coequalizers and coproducts.

First, consider the case of coproducts. Assume Z =
∐
i Zi, where each Zi is

good, and suppose we’re given a pullback diagram
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S yA

yB Z

By the Yoneda lemma, mapping out of yA is the same as evaluating at A,
which preserves colimits. Hence Hom(yA,Z) ∼=

∐
i Hom(yA,Zi). This implies

yA→ Z factors as yA→ Zi → Z. By assumption, yA→ Zi is good. Therefore
it’s enought to show that the map Zi → Z is good. A similar argument applied
to the other leg reduces us to showing that pullbacks of the form

S Zi

Zj Z

are preserved by F . If i = j, one can show that the maps S → Zi, Zj
are equivalences. It’s now easy to see that this is also carried to a pullback.
If i 6= j, the object S is the initial object. Since F preserves colimits, this
is carried to the initial object of Err. Moreover, the coproduct Z =

∐
Zi is

also carried to a coproduct in Err, where it also holds that the pullback of two
distinct components of the coproduct is the initial object. Hence this pullback
is preserved in every case.

We now consider filtered colimits in Err-categories. (We will actually be
interested mainly in cofiltered limits, but we stick with the conventional di-
rection to be consistent with [1]). By definition a colimit is “filtered” if it is
a colimit weighted by a flat presheaf — but in the case of Err-categories, the
situation is much simpler. In fact any pair of index category and flat presheaf
can be replaced (in the sense of Proposition 2.68) with one in which each weight
W (i) ∈ Err is a singleton, and in this situation the weighting is flat if and only
if the indexing category is filtered in the ordinary sense.

Proposition 2.77. Let I,W : I→ Err be an Err-category and a weighting, such
that W (i) is always a singleton — write W (i) = ∗ei Then W is flat if and only
if I is filtered in the usual sense, and infi ei = 0. (These morphisms are not
supposed to be exact)

Proof. Flatness means that the left Kan extension LanyW : [Iop,Err] → Err
preserves finite limits. By standard results (see e.g. [12, Prop. 2.3.5]) the

formula for that Kan extension is LanyW (F ) =
∫ i
W (i) ⊗ F (i). The terminal

functor is F (−) = ∗. This is taken to
∫ i
W (i) = colimiW (i). By Lemma 2.65,

the underlying set of this colimit is a singleton. Hence it has the form ∗e for
some e. There are inclusions ∗ei → ∗e, so e ≤ ei for all i, implying e = 0, as
desired.

Now consider a pullback F ×G H. We consider∫ i

W (i)⊗ F (i)×G(i) H(i).

26



Using Lemma 2.65 again, since coends can be expressed as colimits, we can

use the same coend to compute the undelying set. It’s
∫ i
F (i) ×G(i) H(i) =

colimi F (i) ×G(i) H(i). Since filtered colimits commute with finite limits, we
can rewrite this as ∫ i

F (i)×∫ iG(i)

∫ i

H(i)

This is also the underlying set of∫ i

W (i)⊗ F (i)×∫ iW (i)⊗G(i)

∫ i

W (i)⊗H(i)

Writing out the definitions shows that these sets also have the same error, as
desired.

3 Probability theory

We will now develop certain preliminaries from probability theory which we will
need in the rest of the thesis. There is nothing seriously deep here, but we go
through the material for ease of reading. The main points of interest are

1. How to do probability theory with diagrams in the symmetric monoidal
category FinStoch.

2. Technical properties of the Jensen-Shannon divergence.

We also note here, for convenience, some notation for a few distributions
we’ll use later:

Definition 3.1.

1. We denote by Bern(p) the Bernoulli distribution with parameter p — it
is 1 with probability p and 0 with probability 1− p.

2. We denote by Pois(λ) the Poisson distribution with rate λ. It takes the
value n with probability

λneλ

n!
,

for each n ∈ N (our natural numbers include 0)

3. For some N ∈ N, we denote by Pois≤N (λ) a distribution which we call a
truncated Poisson distribution. It takes the value n with probability

λneλ

n!
,

for each n = 0, . . . , N − 1, and takes the value N with the residual prob-
ability

1−
N−1∑
n=0

λneλ

n!
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3.1 FinStoch

Definition 3.2. The monoidal category FinStoch has

1. Objects the finite sets.

2. Maps X → Y given by X × Y stochastic matrices.

3. Monoidal product given by Cartesian product of sets.

By convention, there is a unique stochastic matrix ∅ → X for all X , and no
stochastic matrix X → ∅ for nonempty X (because an empty column can’t sum
to 1).

Definition 3.3. Given a function f : X → Y between two finite sets, there is
an obvious associated stochastic matrix X → Y given by fxy = δf(x),y. We will
generally abuse notation and simply denote this stochastic matrix by f as well.

This assignment defines a functor Fin→ FinStoch.

In addition, we have the following important operations in FinStoch:

Definition 3.4. Let X ∈ FinStoch be a finite set.

1. The unique stochastic matrix X → ∗ is denoted delX

2. The stochastic matrix associated to the diagonal X → X ×X (i.e the map
x 7→ (x, x)) is denoted copyX .

Remark 3.5. A stochastic matrix f : X → Y is equivalent to a Markov ker-
nel X → Y, where both sets carry the powerset σ-algebra (see e.g. [10] for a
discussion of Markov kernels). We can think of such a matrix as a “stochastic
function”, which receives an input x ∈ X and produces an output in Y, but does
so nondeterministically, according to the distribution f(x). The composition
rule for stochastic matrices is then “independent composition” — composing
the two functions under the assumption that they use independent sources of
randomness. We will sometimes call stochastic matrices “kernels” or “maps”,
when we want to emphasize their role as “functions”, rather than matrices.

Note that a kernel ∗ → X is the same thing as a probability distribution on
X .

Definition 3.6. Let ψ : A → X ×Y be a Markov kernel. We say that a kernel
p : A× X → Y is a conditional distribution of Y ∈ Y given A ∈ A and X ∈ X
if there exists ϕ : A → X so that we have the following identity:

A

X Y

ψ

A

ϕ

p

X Y

=
(5)

In this diagram, the black circles denote either del or copy, as applicable.
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Remark 3.7. Definition 3.6 is a definition of conditional distributions suitable
for parameterized joint distributions. Dealing with such distributions is neces-
sary if we want to combine conditional and interventional distributions. (We
don’t delve into that in this thesis). In the case A = {∗}, we recover the usual
situation of a joint distribution on a product set.

To spell out the connection with the normal definition of conditional distri-
bution: a map p : A× X → Y is a conditional distribution for ψ : A → X × Y
if and only if, for all a ∈ A, and for all x ∈ X with nonzero probability given
a, the distribution p(a, x) is the conditional distribution of Y given X = x and
(X,Y ) ∼ ψ(a). This is also the reason we say a conditional distribution and
not the conditional distribution.

For a more thorough discussion of this point (from a categorical point of
view), see e.g [5, section 11] (in particular definition 11.5 and remark 11.6).

Note that the operation (X ,Y) 7→ X ×Y is not a categorical product, in the
sense of Definition 2.54. This is for the simple reason that a joint distribution
is not uniquely determined by the marginals! Given distributions on X and
Y — that is, maps ∗ → X ,Y — there are in general many possible pairings
∗ → X × Y.

(On the other hand, × does give a categorical product in Fin, the category
of finite sets and ordinary functions).

3.2 Jensen-Shannon divergence

We will later want to compare distinct probability distributions, and we would
like a quantitative measure of “how close” they are to one another. We defer a
discussion of the pros and cons of various such measures to Remark 4.20, after
we have seen the context in which we’ll be using this measure. For now, we just
note that it it extremely natural from the categorical point of view to ask that
this distance measure extends in some way to an enrichment of FinStoch in Met.
The object of this subsection is to show that the square root of the Jensen-
Shannon divergence JSD does this. We refer to [3] or [24] for information on
JSD, but we recount the basic facts here.

We will make use of some basic notions of information theory — for an
introduction to these terms, see [14]. We recall the necessary definitions here:

Definition 3.8. Let p be a probability distribution on a finite set X . Then the
entropy of p is

H(p) :=
∑
x∈X
−p(x) lg p(x)

If X is a random variable, H(X) denotes the entropy of the distribution of X,
which we also call simply the entropy of X.

Remark 3.9. Here lg denotes the base two logarithm. There is some disagre-
ment about whether to use base 2 or base e for information theory. The natural
logarithm, base e, has the obvious advantage of being more canonical. Base 2
has the advantage that the unit of information becomes the familiar bit. Thus

29



for example H(Bern(0.5)) = 1. Of course, the only difference is a constant
factor, so this is not a particularly important choice. We use base 2.

Remark 3.10. The idea of entropy is that H(X) is the amount of information,
in expectation, received by learning the value of X. Thus H(Bern(0)) is zero,
since the value is already known, while, as remarked above, H(Bern(0.5)) is
one — learning the outcome of a random coin flip, we learn exactly one bit of
information.

Definition 3.11. Given two random variables X,Y , with joint distribution
p(x, y), the conditional entropy is defined as

H(X|Y ) =
∑
x,y

−p(x, y) ln

(
p(x, y)

p(y)

)
Their mutual information is defined as

I(X;Y ) = H(X) +H(Y )−H(X,Y ) = H(X)−H(X|Y )

(The claimed identity is easily verified)

The idea here is that relative entropy measures the expected information
contained in X, given that we’ve already learned the value of Y . For example,
if X = Y , relative entropy is zero. Then the mutual information is the amount of
information that’s “shared” between the variables — how much less information
is in X if Y is already known?

Definition 3.12. For p, q two distributions on a finite set X , JSD(p, q) denotes
the Jensen-Shannon divergence between them, which is defined as the entropy
of an equal mixture of p and q, minus the average entropy of p and q:

JSD(p, q) := H

(
1

2
p+

1

2
q

)
− 1

2
(H(p) +H(q))

Note that there are many equivalent definitions of this quantity. We will be
particularly interested in the following:

Lemma 3.13. Let p, q be distributions on X . Let B be an unbiased random
coin, i.e B is a random variable with B ∼ Bern(0.5) Let X be a random variable
which distributed according to p if B = 0 and according to q if B = 1. Then
JSD(p, q) is the mutual information between X and B

We refer to [24] for a proof — it is essentially a straightforward calculation
from the definition. Since I(X;B) = H(B) − H(B|X) ≤ H(B), we have the
following property of JSD:

Corollary 3.14. JSD(p, q) ≤ 1

Lemma 3.15. Let p, q be two distributions on X . Let f : X → Y be a kernel.
Then JSD(p, q) ≥ JSD(fp, fq)
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Proof. Let X,B be as in Lemma 3.13. Observe that f(X) is a random variable
distributed according to fp if Z = 0 and fq if Z = 1. Hence JSD(fp, fq) =
I(f(X), Z). But clearly this is less that I(X,Z) — postprocessing X with an
independent kernel can only remove some of the mutual information, not add
it.

Lemma 3.16. Let f0, f1 : X → Y be kernels. Let p be a distribution on X .
Then JSD(f0p, f1p) ≤ supx JSD(f0(x), f1(x)).

Proof. Let X ∈ X be distributed according to p. Let B be an unbiased random
coin, and let Y ∈ Y be distributed according to fB(X). Then

JSD(f0p, f1p) = I(Y ;B),

JSD(f0(x), f1(x)) = I(Y ;B|X = x).

Hence our claim is that there exists x such that I(Y ;B) ≤ I(Y ;B|X = x). We
insert the entropy formula for mutual information:

H(B)−H(B|Y ) ≤ H(B|X = x)−H(Z|B,X = x)

Since B and X are independent, we can cancel the first term on each side, giving
the inequality

H(B|Y ) ≥ H(B|Y,X = x)

Observe that the expected value of ExH(B|Y,X = x) is precisely H(B|Y,X) ≤
H(B|Y ) (since conditioning always reduces entropy). Hence there is at least
one x so that this inequality holds.

Lemma 3.17. Let p1, p2 be distributions on X , and q be a distribution on Y.
Then JSD(p1 ⊗ q, p2 ⊗ q) = JSD(p1, p2).

Proof. This is an immediate consequence of Lemma 3.13 We learn the value of
a random variable valued in X × Y, distributed according to pZ ⊗ q. Since the
second coordinate is independent of the first, it confers no information about Z
(but of course, it also doesn’t confer negative information).

Definition 3.18. We define the distance dJSD(f, g) = supx

(√
JSD(f(x), g(x))

)
for f, g ∈ FinStoch(X ,Y)

Proposition 3.19. The distance dJSD defines an enrichment of FinStoch in
Met.

Proof. It is a standard result that the square root of the Jensen-Shannon entropy
defines a metric (see eg [3]). It’s a straightforward consequence of this that
taking the supremum over the codomain defines a metric as well. The last
condition to define an enriched category is that the composition map

FinStoch(X ,Y)× FinStoch(Y,Z)→ FinStoch(X ,Z)

is short in each variable — this follows from Lemmas 3.15 and 3.16.
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Proposition 3.20. The monoidal structure of FinStoch is compatible with the
enrichment Proposition 3.19, in the sense that it defines a monoidal Err-category,
see e.g. [16].

Proof. The content of this proposition is that the tensor product map

FinStoch(X ,Y)× FinStoch(X ′,Y ′)→ FinStoch(X × X ′,Y × Y ′)

is short in each variable. This is a direct consequence of Lemma 3.17

4 Finite Graphical models

We’re now ready to start delving into the main topic of the thesis: transforma-
tions between graphical models. As noted in the introduction, the starting point
of our theory is finite DAG models. We have chosen this class of models mainly
to avoid technical issues involving convergence, almost-everywhere equality, and
so on. Our grahical models are equivalent to structural causal models (SCMs,
see e.g. [19, Def. 6.2]) with finite, acyclic underlying graph, and where each
variable takes values in a finite set. Note that we will generally not concern
ourselves with the counterfactual ([19, Sec. 6.4]) behavior of our models, but
only the interventional distributions. This decision means our transformations
correspond to Rubenstein et al’s exact transformations — but see Remark 4.17.

Definition 4.1. A graphical model M consists of the following data:

1. A directed acyclic graph G = G(M).

2. For each vertex X ∈ G, a finite set M [X], and a stochastic

matrix
M [ϕX ] :

∏
Y ∈paG(X)

M [Y ]→M [X]

Given a subset A ⊆ G of the vertices, we write M [A] :=
∏
X∈AM [X].

Remark 4.2. In our models, the vertices are generally the most important
part. Therefore, we write things like X ∈ G to mean “X is a vertex of G”, and
denote by f : G→ G′ a function from the vertices of G to the vertices of G′.

Definition 4.3.

1. Given a model M , a subset X ⊆ G, and a variable y such that all its
direct parents are in X, we abuse notation and denote by M [ϕy] the map
M [X] → M [y] given by applying M [ϕy] to the relevant coordinates of
M [X], and throwing away the rest.

2. In the situation above, there is an obvious map

(1M [X],M [ϕy]) : M [X]→M [X ∪ {y}] = M [X]×M [y]

given by retaining the values from M [X] and generating y ∈ M [y] by
M [ϕy].
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3. Given a set X ⊆ G, we can select an ordering of G\X, y1, . . . yn such that
all of yi’s parents are contained in X ∪ {y1, . . . yi−1}, for i = 1 . . . n. (It is
clear that such a set exists, since the graph is finite and acyclic, although
it is equally clear that the ordering is not necessarily unique). Then we
can construct the composed map

M [X]→M [X ∪ {y1}]→M [X ∪ {y1, y2}]→ · · · →M [G]

We call this map the interventional distribution given X and denote it by
P (−|do(X = ·)) or Pdo(X=·).

4. For the case X = ∅, we find a map ∗ → M [G], which is called the obser-
vational distribution.

5. Given two subsets X,Y ⊆ G, we can define the interventional marginal
distribution M [X] → M [Y ] as the composition M [X] → M [G] → M [Y ]
of the interventional distribution with the map that simply discards the
values not in Y .

Remark 4.4. The notation for these kernels can get a little clunky — in prac-
tice, once you know the domain and codomain, there is usually no chance of
confusion.

Of course, it is not clear that the interventional distributions are well-defined.
The intuition is clear enough: the interventional distributions describe the dis-
tributions that obtain if we fix the value of the variables in X and then “run”
the model to produce the remaining values. The fact that disparate parts of the
model “run independently” implies that it doesn’t matter which order one does
this in. The following proposition shows that it is, in fact, well-defined.

Proposition 4.5. The interventional distribution is well-defined.

For this proposition, we will need the following lemma.

Lemma 4.6. Let S be a finite partially ordered set. Let A : s1 . . . sn and
B : s′1 . . . s

′
n be two totalizations of the ordering on S — in other words, two

ways of arranging the elements of S in a nondecreasing sequence. Then one can
turn A into B by a finite sequence of transpositions, where each transposition
exchanges two adjacent, incomparable elements.

Proof. Let’s show that any nondecreasing sequence can be turned into B by
such a sequence of transpositions — this is really the content of the lemma.
Define the error of a sequence s1 . . . sn as the total number of pairs i, j so that
si and sj are not in the same order as in B. Clearly if the error is zero, we must
already be in sequence B. Suppose the error is greater than zero. Then there
must be a pair of consecutive elements, si, si+1, that are in the wrong order
compared to the ordering B. They must also be incomparable — we can’t have
si+1 ≤ si, since it’s a nondecreasing sequence, and we can’t have si ≤ si+1:
since B is nondecreasing, if this was true, they would be in the same order as
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in B. Hence we can swap si and si+1 — this decreases the error by 1. After a
finite number of steps the error must be zero, and we have obtained B.

Proof of Proposition 4.5. By applying Lemma 4.6 to the vertices of G, par-
tially ordered by causal dependence, we see that we can move between any two
constructions of the interventional distribution by swapping two consecutive
variables at a time. Hence it suffices to show that we may swap the order of
two consecutive yis, neither dependent on the other, without changing the final
distribution. Consider the following diagram manipulation:

M [X]

M [y]

M [y′]M [y]M [X]

M [ϕy]

M [ϕy′ ]

M [X]

M [y]

M [y′]M [y]M [X]

M [ϕy]

M [ϕy′ ]

= =

M [X]

M [y′]M [y] M [X]

M [ϕy] M [ϕy′ ]

In the first step we use the fact that y′ does not depend on y, so we may delete
the M [y] input to M [ϕy′ ]. Then we just rearrange the wires.

This shows that the composition M [X]→M [X ∪ {y}]→M [X ∪ {y, y′}] is
equal to another map M [X]→M [X ∪ {y, y′}]. Clearly a similar argument will
show that the composition M [X]→ M [X ∪ {y′}]→ M [X ∪ {y, y′}] is equal to
the same map. This concludes our proof.

Proposition 4.7. Each mechanism M [ϕX ] : M [paG(X)] → M [X] is a condi-
tional distribution for the observational distribution ∗ →M [paG(X) ∪ {X}].

Proof. Recall that given a distribution ∗ → X ⊗ Y, a kernel X → Y is a condi-
tional distribution if and only if we have the identity Eq. (5). After marginaliz-
ing out the other variables, the observational distribution on M [paG(X)∪{X}]
factors as

∗ →MpaG(X)
(1M[paG(X)],M [ϕX ])

−→ M [paG(X) ∪ {X}].

Diagramatically, this looks like
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M [ϕX ]

M [pa(X)]M [X]

Which is exactly the statement we wanted.

Of course, there is nothing surprising about this proposition — just as in
the classical theory of graphical models, it holds more or less by construction.
In classical treatments, this is usually not even considered interesting enough to
make into a theorem, although it’s implicit in most treatments of the Markov
property for structure causal models, eg [19, prop. 6.31].

Proposition 4.8. The observational distribution satisfies the directed Markov
property with respect to the DAG G.

Proof. We must prove that any variable X is independent of its nondescendants
given its parents. Let’s introduce the somewhat awkward notation nd(X) for
the nondescendants of X, minus the parents. Then we are trying to show
nd(X)⊥X | pa(X).

Observe this diagram manipulation:

pa(X) X nd(X) pa(X) X nd(X)

=

pa(X) X nd(X)

=

In the first step, we are factoring the observational distribution on X ∪pa(X)∪
nd(X) as “sample the parents and nondescendants of X, then sample X con-
ditional on the parents” — according to the definition, this is a possible choice
for how to construct the observational distribution.

In the second step, we are factoring the distribution on pa(X) ∪ nd(X) as
“sample the parents of X, then sample the nondescendants of X according to
the conditional distribution”. This is always possible, and gives us the diagram
on the right.
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By [5, Remark 12.2], this implies the conditional independence we wanted.

Remark 4.9. In fact, Propositions 4.7 and 4.8 characterize the observational
distribution uniquely. This can be proven diagramatically by using a diagramat-
tic formulation of Proposition 4.8 to show that the observational distribution
factorizes as a certain diagram, and then using Proposition 4.7 to show that the
morphisms in this diagram may be replaced by the mechanisms.

In classical terms, this argument corresponds to arguing that the probability
factorizes according to the graph, and that the factors must be precisely the
mechanisms.

Definition 4.10. An abstraction of models M → M ′ consists of the following
data:

1. A subset R ⊆ G(M) of relevant variables.

2. A surjective map f : R→ G(M ′).

3. For each Y ∈ G(M ′), a surjective function M [f−1(Y )]→M [Y ]

Definition 4.11. We let ∗ ∈ FinMod denote the unique model with an empty
underlying graph — in other words, ∗ has no variables.

It is clear that, given any other model M , there is a unique abstraction
M → ∗, given by R = ∅, the map ∅ → ∅, and so on. (In other words, ∗ is
terminal in FinMod)

S

T

C

 

S

C

Figure 1: Example 4.12

Example 4.12. Consider a very simple model containing three binary variables.
S measures whether or not a given person smokes. T measures the presence of

36



tar in that given person’s lungs. C measures whether or not that person ends up
with lung cancer. The causal structure of this model is as in Fig. 1. Suppose that
S ∼ Bern(0.2), T ∼ Bern(0.8S), and C ∼ Bern(0.3T + 0.1)8. We can consider
a simplified model M ′ containing only S and C, with C ∼ Bern(0.24S + 0.1).
There is an obvious abstraction M → M ′, with Rf = {S,C}, f : {S,C} →
{S,C} the identity, and the maps M [S]→M ′[S],M ′[C]→M ′[C] identities.

S

C

 

S

C

Figure 2: Example 4.13

Example 4.13. Consider the model M ′ from above — we have two variables,
smoking and cancer, in a simple causal relationship. We may abstract this to a
different model with the same variables and the same marginal distributions, but
with S⊥C. Let’s call this model M⊥. In other words, M⊥ has two variables S,C,
a discrete causal graph, S ∼ Bern(0.2) and C ∼ Bern(0.148). See Fig. 2. There
is again an obvious map M → M⊥ which is just the identity everywhere. This
is a valid map of models — but of course, it distorts the distributions involved
quite severely. To quantify the error of the map M →M⊥, we can calculate the
Jensen-Shannon divergence between the two distributions on {0, 1}2.

We will elide this annoying calculation, and simply note that the actual dJSD

(Definition 3.18) is approximately 0.0850.

R

W L

Figure 3: Example 4.14

8These numbers are made up, and probably wildly different from the actual statistics
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Example 4.14. We can consider a model with three binary variables. W , which
measures whether a given person drinks wine regularly. L, which meansures
whether or not a person lived for a long time, and R, which measures whether
or not a person is rich. We assume that the causal structure looks like Fig. 3.
R ∼ Bern(0.1), W ∼ Bern(0.1 + 0.1R), L ∼ Bern(0.1 + 0.5R).

We can abstract this to a model containing only W → L — but now there is
a non-obvious decision to make about the distribution. One natural choice is to
maintain the observational distribution. This means that the causal distribution
P (L = 1|do(W = w)) is chosen to be the same as the conditional distribution
P (L = 1|W = w) in the original model. This maintains the observational
distribution, but it introduces error in the interventional distribution, since
the true interventional distribution P (L = 1|do(W = w)) is not the same —
the dependency between L and W is being confounded by R, which we have
forgotten. Another choice would be to retain the causal relationship — since
there is no causal relationship between L and W , this would mean setting them
to be independent, with L ∼ Bern(0.15),W ∼ Bern(0.11). This would destroy
the statistical relationship between them, but provide the correct predictions
about interventions. (Of course, one could also interpolate between these two
models).

As exemplified above, our notion of abstraction places no requirements of
consistency between the two models. The two models may lead to completely
different predictions. The following error measure captures this difference:

Definition 4.15. Let α : M →M ′ be an abstraction. Let X,Y be two sets of
variables in V (M ′). Then α induces a diagram

M [α−1(X)] M [α−1(Y )]

M ′[X] M ′[Y ]

α α

which does not necessarily commute. We can compute the distance, in the
sense of Definition 3.18, between the two paths around the square. Call this
quantity Eα(X,Y ). Now define the error of α to be

e(α) := sup
X,Y⊆V (M ′),disjoint

Eα(X,Y ).

Example 4.16. The calculation in Example 4.13 shows that the error of the
map M → M⊥ is at least ≈ 0.085. The arrow M → M ′ in Example 4.12 har
error zero — as long as we’re only interested in the causal relationship between
smoking and cancer, we may ignore the presence of tar.

Remark 4.17. Note that our error measure only accounts for differences be-
tween the interventional distributions — not between conditional distributions.
The simplest example of this is to consider a model M with two variables X,Y ,
where X causes Y . Suppose simply that X is binomial distributed with p = 0.5,
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and Y := X. We can transform this to a model M ′, also with two variables,
X ′, Y ′, where X ′ = X and Y ′ = ∗ (no matter what Y is). This abstraction
is exact (it has error zero), because for any intervention on X, the passage to
X ′ loses no information, while an intervention on Y has no effect on the trans-
formed distribution. On the other hand, if we want to predict the conditional
distribution P (X = x|Y = y), it is clear that the passage to the high-level model
loses relevant information — it is just not causal information.

An error measure which accounted for both conditional and causal informa-
tion would correspond to the requirement that our transformations preserve not
just interventional distributions, but also counterfactuals as well.

In [2], Chalupka et al consider a similar situation involving transformations
between models — their case is slightly different, since it involves marginaliz-
ing out a causal node, but retaining information about its confounding effects,
something which is not captured in our framework. They prove a theorem,
which they call the causal coarsening theorem, saying that in their situation,
if two values of the same variable lead to the same interventional distribution,
they also lead to the same conditional distribution9

This suggests that there may be a strong connection between preserving in-
ternventional distributions and counterfactuals, which would certainly be worth
investigating further.

Remark 4.18. We’ve seen in Examples 4.13 and 4.14 that certain abstrations
are prevented from being exact just by the nature of the map G ⊇ R → G′.
This happens when the two causal structures are incompatible in some way. It
is difficult to write down an exact list of criteria for when this happens, but we
can list some essential cases:

1. When R = V , the structures “are compatible” as long as, for each edge
x→ y ∈ G, there exists an edge f(x)→ f(y) ∈ G′, or f(x) = f(y).

2. When G′ is the subgraph obtained by deleting a vertex x from G, and
R = V (G′), then the two structures are compatible if and only if x has at
most one child.

Here “compatible” just means that the graphs do not present an obstruction to
the existence of an exact transformation.

Lemma 4.19. Error satisfies e(αβ) ≤ e(α) + e(β).

Proof. Let α : M →M ′, β : M ′ →M ′′ be two abstractions. Let X,Y ⊆ V (M ′′)
be disjoint sets of variables.

Consider this diagram

9This is not entirely accurate — in fact, this result only holds for almost all (in the sense
of Lebesgue measure) possible choices of conditional distributions.
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M [α−1(β−1(X))] M [α−1(β−1(Y ))]

M ′[β−1(X)] M ′[β−1(Y )]

M ′′[X] M ′′[Y ]

α α

β β

By assumption, the error of the top square is at most e(α), and of the bottom
square is at most e(β). It now follows from Lemma 2.48 that the error of the
outer square is at most e(α) + e(β) as desired.

Remark 4.20. At this point, let us discuss the choice of
√

JSD as the distance
function on probability distributions. There are several good candidates in
the literature for such a distance function. Perhaps the most natural is the
Kullback-Leibler divergence ([9]), which measures the information inefficiency
from assuming that your data is distributed according to p, when it’s really
distributed according to q. The main issue with the Kullback-Leibler divergence
is that it is asymmetric and does not satisfy a triangle inequality (not even when

raised to some power — in the way that JSD1/2 satisfies the triangle inequality).
The asymmetry, while it certainly makes things more complicated, is not really
a serious defect from our point of view — in our application, there is actually
a “ground truth” and an “imperfect prediction” that we are comparing, so the
asymmetry is not so unnatural. The main problem is the lack of a triangle
inequality, which means Lemma 2.48 can’t work. This means that we don’t
know how to prove Lemma 4.19 for KL-divergence. Without some version of
this lemma, the whole notion of a compositional approach to abstraction is
unworkable.

Another imporant class of distance functions are the Wasserstein metrics
(See eg [22, Chapter 6]). As the name implies, these are a class of metrics on
the space of (sufficiently “nice”) probability distributions on a metric space X.
These metrics do have the theoretical properties we require, but they require the
choice of a metric on the sets in question. There is no technical reason we could
not have developed our theory for finite metric spaces — the distance d(x, y)
measuring the cost of predicting x when the true value was y. However, we have
decided not to add this layer of complication, finding the information-theoretic
Jensen-Shannon distance sufficient for the present note.

Lemma 4.19 lets us make the following definition:

Definition 4.21. We define the category FinMod of finite models and abstrac-
tions to be the Err-enriched category where

• Objects are finite graphical models.

• Morphisms are abstractions

• The error of a morphism is its error as in Definition 4.15.
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Example 4.22. Applying Definition 2.50, we obtain a (unenriched) category
FinModex of exact abstractions. Its morphisms are those abstractions with zero
error. This means that, as long as we are only concerned with the value of high-
level variables, there is no predictive error in using the high-level model instead
of the low-level one. This is essentially the notion of exact transformation as
developed by Rubenstein et al in [21]. We note that our version enforces a strict
correspondence between high-level and low-level variables which is not implied
by their framework (and of course, we are considering a much less rich notion
of causal model).

Remark 4.23. We emphasize that the error of an abstraction is not exactly
a measure of “information loss” — the existence of an exact transformation
α : M →M ′ does not imply that M ′ contains “as much” information as M . It
only implies that the value α(X) ∈ M ′[x] contains as much causal information
about other variables of the form α(Y ) as does the untransformed variable X. As
a degenerate example, if the model M ′ contains only one variable, any measure-
preserving function is an exact transformation, because, trivially, α(X) contains
all relevant information about itself.

Proposition 4.24. Let (M,G) and (M ′, G′) be models, and let f : M → M ′

be an abstraction. Then f is an isomorphism in FinModex if and only if the
following all hold:

1. Rf = G — in other words, f defines a map G→ G′.

2. The map G→ G′ is a bijection.

3. The function fX : M [X]→M [f(X)] is a bijection for each X ∈ G.

4. For each possible intervention do(X1 = x1, X2 = x2, . . . ), when M [G] is
equipped with the inteventional distribution

P (− | do(X1 = x1, X2 = x2, . . . )),

and M ′[G′] with the distribution

P (− | do(f(X1) = fX1
(x1), . . . ))

the map f : M [G]→M ′[G′] is measure-preserving.

Proof. First, suppose f is an exact isomorphism. Clearly, if f is only defined
on a proper subset of G, so is gf for any g, so gf cannot equal the identity. So
1. holds. Similarly obvious, given an inverse f−1, we have f−1f and ff−1 both
equal to the identity. In particular their underlying map on graphs are equal
to the identity. So f : G→ G′ has an inverse, and is therefore a bijection. The
same argument shows that the maps on sets must be bijections. Finally, the
last part is just the definition of exactness in this situation.

For the other direction, suppose a map satisfies 1-4. Then we can construct
an inverse simply by putting f−1 : G′ → G the inverse of f (existing because it’s
a bijection), f−1

f(X) : M [f(X)] → M [X] an inverse of fX , and so on. Condition

4. implies that this transformation will again be exact.
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The content of this proposition is that isomorphic finite graphical models
are exactly those which have the same variables (up to renaming), the same
outcome spaces (up to bijection), and the same probabilistic behavior under
any intervention. This means for instance that isomorphic models can have
distinct graphs — edges that play no causal role can be deleted (or added)
freely.

X ∈ X

Y ∈ Y

 

p(X) ∈ {0, 1}

Y ∈ Y

Figure 4: Example 4.25

Example 4.25. Let X ,Y be two finite sets, and let f : X → Y be a (deter-
ministic!) function, and let ψ be a distribution on X . This data described a
model of two variables, X ∈ X and Y ∈ Y as depicted on the left of Fig. 4. Let
furthermore p : X → {0, 1} be a partition of X into two classes. Then we can
cook up a new model of two variables p(X), Y , where the distribution on X is
given by p(ψ), and the kernel {0, 1} → Y is given by f̄ : {0, 1} → Y, sending
i ∈ {0, 1} to the conditional distribution P (f(x) = y|p(x) = i). This is the
model on the right.

This example shows that we can “abstract a deterministic mapping into a
stochastic one” — in this situation, the randomess in f̄ reflects our uncertainty
about which element of X we are actually holding.

The error of this abstraction is supx∈X d(f(x), f̄(p(x))) - the magnitude of
the largest mistake we can make by inferring from the abstracted model instead
of the unabstracted model.

We note that models with exactly one variable are essentially the same thing
as finite probability spaces, in the following sense:

Definition 4.26. Let FinProb ⊆ Prob be the category of finite probability
spaces and measure-preserving maps.

Proposition 4.27. There is a functor F : FinProb → FinModex which takes
a finite probability space (X , P ) to the model F (X ) with G(F (X )) = ∗ (a
DAG with exactly one vertex, ∗), F (X )[∗] = X , and the unique mechanism
F (X )[ϕ∗] : ∗ → X given by P .

A measure-preserving map f : X → Y is taken to the map F (f) : F (X ) →
F (Y) given by RF (f) = {∗}, the mapping on vertices being the only possible
thing, and the map X → Y being f .
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Moreover, every finite model with exactly one variable is in the image of this
functor (up to isomorphism), and a map f : M → M ′ between such models is
in the image of this functor if and only if Rf = G(M).

Proof. Verifying functoriality of the described construction is more or less triv-
ial. The fact that it respects identities and composition is a direct consequence
of the definitions. It is also clear that the described map is, in fact, an exact
transformation between models — since the interventional distributions are all
degenerate, there is not much to check.

The claim that every finite model with one variable is isomorphic to one of
this form is also easy to verify — simply take X to be M [∗] (where ∗ is the
unique variable), and P to be the observational probability. The last thing to
verify is that all maps with Rf = G(M) between such models have this form
(the converse is clear). Again, given such a map f : F (X ) → F (Y), it’s easily
verified that f = F (f∗), with f∗ : F (X )[∗] = X → Y = F (Y)[∗].

This proposition means it makes some sense to treat a finite probability space
as if it were a one-variable model. Hence we may pretend that FinProb ⊆ FinMod
— although we have to remember that there may be extra maps with R = ∅
between them, when considered as models.

We could have considered an Err-enriched category of finite probability spaces,
with the error of f : (X , P )→ (Y, P ′) given by dJSD(f(P ), P ′). The above con-
struction extends to this larger category. However, we won’t be thinking about
this extra generality.

Remark 4.28. Rather than taking the supremum over the domain when defin-
ing our error measure, we could also have taken the expected value (or perhaps
the square root of the expected Jensen-Shannon divergence, or something to
that effect). Of course, if we had done this, we couldn’t have used the slick
definition in terms of the Met-enrichment of FinStoch, but we could certainly
still have made sense of a definition of this type.

The reason to consider worst-case, rather than expected error, is that we are
trying to measure the precision of our predictions under interventions. We don’t
have access to a probability distribution on interventions — and moreover, since
in general the character of the predictions may affect the interventions happen-
ing, it’s not even clear that such a thing would be meaningful. To elaborate
on this point, think of the example of predicting the effects of smoking on can-
cer. The prediction that smoking does or does not cause cancer may affect the
prevalence of interventions do(Smoking = Yes). This is why the most sensible
way of aggregating errors is to take the worst case.

5 Profinite models

So far, we have considered transformations between models only in the simplest
possible case, namely the case of finite models. The obvious next step is to gen-
eralize this to cases involving infinite models, which are after all fairly common.
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It turns out that the mere existence of a category of finite models gives us a
natural way to define a category of potentially infinite models.

The basic idea is this: given an infinite model (supposing we had figured out
some good definition of these), M , and a finite model M ′, we can consider the
error space of transformations M ′ → M , which we could denote Mod(M,M ′).
Given a transformationM ′ →M ′′, we obtain a map Mod(M,M ′)→ Mod(M,M ′′).
In other words, Mod(M,−) forms a functor FinMod → Err. Now the claim is
that this functor contains all the relevant information about M . This might be
slightly controversial, and one can probably come up with reasonable definitions
of “infinite model” for which it fails. The philosophical justification for such a
claim is that the only properties of a model which have any practical statistical
meaning are those that can be reflected in finite terms: we are always doing
finitely many measurements (even if it’s a huge number), and our measurement
devices always have finitely many values (even if we measure with a huge num-
ber of decimals, it’s a finite number!). Armed with this idea, we can define
infinite models as certain functors FinMod→ Err. (We use the term “profinite”
for these objects by analogy with objects such as profinite groups, which result
from applying a similar construction to the category of finite groups)

Definition 5.1. A profinite model is a flat Err-functor FinMod→ Err. The Err-
category of profinite models is ProFinMod := [FinMod,Err]op

flat ⊆ [FinMod,Err]op,
the full subcategory of flat functors.

A profinite model simply is “something that can be approximated by finite
models.” We are applying the “Yoneda philosophy” of Lemma 2.36 backwards
here — considering the functor C → [C,Err]op given by X 7→ C(X,−), instead
of the functor C→ [Cop,Err]. This obviously means everything is the other way
round, but it makes no technical difference for us.

Remark 5.2. “Flat” is a technical term, which we previously encountered in
our discussion of limits in Err-categories. See [1] for a general treatment of flat
functors in enriched categories (note that our Err satisfies their conditions on V).
We will soon see what it means in concrete terms for a functor FinMod → Err
to be flat.

Remark 5.3. Given two profinite models X,Y , a transformation α : X → Y
between them consists of a natural family of functions αM : Y (M)→ X(M) for
each M ∈ FinMod. The error of such a transformation is

e(α) = max(sup
M,m

e(αM (m))− e(m), 0),

where M runs over all possible finite models, and m runs through Y (M). In
other words, for each finite model, given an abstraction of Y into M , we must
specify an abstraction of X into M . And the error of this assignment is the
supremal increase in error.

Remark 5.4. Each finite model M defines a profinite model FinMod(M,−).
This assembles into an Err-functor FinMod → ProFinMod, which we denote y.
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This functor has the property that FinMod(M,M ′) → ProFinMod(yM, yM ′) is
an isomorphism for all M,M ′ — in other words, it’s fully faithful. Moreover,
ProFinMod(X, yM) ∼= X(M) for all X,M , by the (enriched) Yoneda lemma,
Remark 2.53. (See also Remark 2.37). Note that we are working in the dual
situation, considering an embedding Cop → [C,Err] instead.

This means we can essentially treat the profinite models as an extension
of the collection of finite models — we can treat a finite model as a profinite
model using the functor y, and this does not alter the relationship between
finite models. Moreover, it makes the notion that X(M) for X ∈ ProFinMod
and M ∈ FinMod represents the set of abstractions X →M into a literal truth.

Remark 5.5. When considering maps M → M ′ from an infinite model to a
finite model, we will sometimes take a slightly different perspective. Rather than
viewing the finite model as an “approximation” or “abstraction” of the infinite
model, we can instead think of it as a “view into M” — a way of focusing on a
small piece of the big model. (Of course, we could also use this perspective for
a finite model M). We may occasionally describe a map M → M ′ as a “view
into M” when we wish to emphasize this point of view.

Proposition 5.6. Let X : FinMod → Err be a functor For each diagram in
FinMod like this:

A

B C,

g

f

we can form the pullback X(A) ×X(C) X(B) in Err. We can also consider
the set

S = {(M,a : M → A, b : M → B, h ∈ X(M)) | ga = fb}/ ∼

where ∼ is the equivalence relation induced by identifying, for each quadruple

h ∈ X(M), p : M →M ′, a : M ′ → A, b : M ′ → B

the two tuples
(M,ap, bp, h), (M ′, a, b,X(p)(h))

We can make this an error set by setting

e(x) = inf
(M ′,a′,b′,h′)∼x

max(e(a), e(b)) + e(h).

In other words, the error of an equivalence class x is infimum of max(e(a), e(b))+
e(h) taken over all the representatives of the equivalence class. There is always
a map S → X(A)×X(C) X(B) given by

(M,a, b, h) 7→ (X(a)(h), X(b)(h)).

The functor X is flat if and only if this map is always an isomorphism of error
sets, and X(∗) = ∗0.
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Proof. By definition X is flat if and only if the left Kan extension LyX :
[FinModop,Err] → Err preserves finite limits. It preserves finite limits if and
only if it preserves finite limits of representables, if and only if it preserves pull-
backs of representables and the terminal object, by Proposition 2.76. Recall
that the formula for the left Kan extension is

LyX(F ) =

∫ M

F (M)⊗X(M)

If F = yA is a representable, this is rewritten as∫ M

FinMod(M,A)⊗X(M),

which is equivalent to X(A). If F = yA×yC yB is a pullback of representables,
we instead get∫ M

FinMod(M,A)×FinMod(M,C) FinMod(M,B)⊗X(M),

which is precisely the error set denoted S above. The statement thatX preserves
pullbacks of representables is then precisely the statement that the map from
this set to X(A)×X(C) X(B) is an isomorphism.

Remark 5.7. The intuition behind Proposition 5.6, which can be regarded as
an alternative definitition of “profinite model”, can be phrased as follows:

• Any finite family of finite abstractions of a profinite model admits a “com-
mon refinement”, a single finite abstraction which contains all the infor-
mation from those finite models.

• Any equations between the abstractions is “witnessed” by a common re-
finement.

To explain the second point, imagine that a profinite model X admits two
views α ∈ X(M) and β ∈ X(M ′), where M has causal graph A→ B and M ′ has
causal graph B′ → C — in other words, we have given two ways of extracting
two variables with a one-way causal relationship from X. Suppose further we
have the equation B = B′, meaning those two random variables always agree (or
agree with probability one, maybe). Then the second statement says we can find
a common refinement γ ∈ X(M ′′), where M ′′ has causal graph A → B → C,
and α is the restriction to the first two variables, and β is the restriction to the
second two. This refinement “witnesses” B = B′ in the sense that, given such a
refinement, it obviously follows that B = B′ (because they are just two copies
of the same variable).

To phrase this diagramatically, consider the following diagram
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X

M ′′ M

M ′ B

If we know that the inner square commutes, and the maps X → M,M ′ factor
over M ′′ as depicted, it obviously follows that the outer cell commutes. The
flatness condition means that (up to some arbitarily small error), the converse
holds — given that the outer square commutes, we can “fill out the middle”
with a finite model M ′′.

We now give some corollaries of this somewhat abstract description.

Corollary 5.8. Let X be a profinite model. Given views f, g : X → A,B with
error both less than or equal to ε. Let δ > 0 be any real number. there exists a
factorization diagram like so

X

M A

B

f

g

h

b

a

With M finite, and so that max(e(a), e(b)) + e(h) < ε+ δ.

In other words, we can form “common refinements” of models without in-
creasing the error — the error gets “spread out” across the two steps of abstrac-
tion, but the total error does not increase.

Let us give this proof in some detail.

Proof. We consider the diagram in FinMod given by

A

B ∗

(recall that ∗ is the terminal model, with zero variables)
Clearly the pullback X(A)×X(∗) X(B) in Err is just X(A)×X(B) The two

given views identify a point (f, g) in this set with error less than or equal to ε.
On the other hand the set S from Proposition 5.6 can we rewritten as

{M,a : M → A, b : M → B, h : X →M}/ ∼
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since the condition is trivial. The error on this set is

e(p) = inf
(M,a,b,h)∼p

max(e(a), e(b)) + e(h).

Hence the (f, g) corresponds to a point in this set with error less than ε — mean-
ing we can find some representative (M,a, b, h) with max(e(a), e(b)) + e(h) <
ε+ δ. This is exactly what we wanted.

Example 5.9. Let G be a DAG which is not necessarily finite, but where the
ancestral set10 of each vertex is finite. Let for each variable V ∈ G a finite set
M [V ] be given, and a kernel M [pa(V )]→ M [V ] in FinStoch be given. (This is
simply the obvious meaning of a “model of G”).

Then given a finite model M ′, we can define an abstraction α : M →M ′ to
be

1. A finite, upwards-closed11, full subgraph Fα of the vertices in G.

2. And an a an abstraction M |Fα → M ′, where M |Fα is the obvious finite
model obtained by restricting M to Fα.

We can define the error of such an abstraction to simply be the error of the
“underlying” abstraction of finite models. There is an obvious way of composing
such an abstraction with a further abstraction M ′ → M ′′. This data gives a
functor FinMod→ Err, which we can denote M — it sends the model M ′ to the
set of abstractions M →M ′. (We are neglecting to verify that this satisfies the
conditions of a functor).

This functor is in fact a profinite model. To see this, consider two abstrac-
tions (Fα, α : M |Fα → A) and (Fβ , β : M |Fβ → B) Suppose that this fits into a
diagram

M A

B C

Then we can build a common factorization γ : M → M ′ by putting Fγ =
Fα ∪ Fβ , and M ′ = M |Fγ . By construction, α and β factor over this, so that
we have a diagram

M

M ′ A

B C

10The ancestral set of y is the set of all vertices x so that there exists a directed path from
x to y

11In the sense that, if X → Y is an edge and Y ∈ Fα, then X ∈ Fα
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This diagram clearly commutes by construction, and it’s also clear that the
error of γ is zero, while the erros of the maps M ′ → A,B are exactly the
errors of the maps M → A,B. Hence the functor M satisfies the condition of
Proposition 5.6.

In other words, we can define a view into M as a view into some finite
subgraph of G.

5.1 Profinite models as limits

Profinite models provide a reasonable abstract theory of “infinitary” causal
models. One big issue is that specifying the data of X(M) for every possible
graphical model is not always practical. We will now see a different way of
constructing profinite models, namely as limits.

We have the following general result:

Proposition 5.10. The category ProFinMod has all cofiltered limits. Moreover,
every profinite model is a cofiltered limit of finite models.

This is a case of an even more general result, [1, Cor. 2.2].

Remark 5.11. Unpacking the definitions, the previous proposition means that,
for any profinite model M , we can find a system of finite models Mi indexed by
a small (Err-)category I, such that there is a canonical abstraction M →Mi for
each i, and so that an abstraction M → N for a general finite model N factors
as M →Mi → N — this choice of i being non-canonical.

Example 5.12. Let M be a model of an infinite graph as in Example 5.9.
For each finite full upwards-closed subgraph F ⊆M , we can consider the finite
model M |F . If F ⊆ F ′, there is a natural marginalization M |F ′ →M |F .

We can consider the Err-category P (M) with objects the finite subsets F as
above, a single exact morphism F → F ′ if F ⊇ F ′, and no morphisms otherwise.
Then the construction F → M |F is a functor P (M) → FinMod. The limit of
this functor in ProFinMod is M .

Example 5.13. Consider a Poisson process X with rate λ. This is a stochastic
process taking place in continuous time. It takes values in N. Given X(t0) = n,
the probability that X(t1) = m for t1 > t0

λm−n(t1 − t0)m−neλ(t1−t0)

(m− n)!
(6)

for m ≥ n and 0 for m < n. In other words, the value X(t1) − X(t0) has
distribution Pois(λ(t1 − t0)).

We can make this into a causal model by allowing interventions at any time
which set the current value X, and which don’t affect the above conditional
distributions.

Formally, given a finite set of times 0 = t1 ≤ t1 · · · ≤ tn, and a nat-
ural number N , we define the finite model X{ti},N to have n nodes labeled
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X(t1), . . . X(tn), an edge X(ti) → X(ti+1) for each i < n, and no other edges.
The outcome space of the variable X(ti) is in each case {0, 1, . . . , N}. The
distribution of X(t0) is 0 with probability 1, and the kernels X(ti) → X(ti+1)
are given by the formula Eq. (6), except that every outcome above N is re-
placed with N — in other words, X(ti+1) − X(ti) is distributed according to
Pois≤N−X(ti)(λ(ti+1 − ti)).

If {ti}i∈I ⊆ {sj}j∈J , and N ≤ N ′ there is an obvious exact abstraction
Xsj ,N ′ → Xti,N . The cofiltered limit lim{ti}⊆R≥0,N∈NXti,N “is” the (causal)
Poisson process X.

Example 5.14. Consider a discrete dynamical system with variables {Xi},
taking values in the finite sets {Xi}. This just means we have given a “timestep”
function T :

∏
i Xi →

∏
i Xi. Now we can form a graph G with the Xi as the

vertices, and with an edge Xj′ → Xj whenever T ((xi))j depends on the value
of xj′ . Note that there may be self-edges Xi → Xi in this graph. Suppose we
also have given an initial value (x0

i ) ∈
∏
i Xi

Given a natural number N , we let MN be a finite model with variables Xi,n

for each n = 1, . . . N and each i. We let the edges of the graph be given by
Xi,n → Xj,n+1 if there is an edge Xi → Xj in G (and no other edges). The
kernel

∏
j′→j Xj′ → Xj is given by the deterministic function T (−)j — this

makes sense because, by assumption, that function only depends on the given
values. The distribution on Xi,0 is given by xi with probability 1. There is an
obvious (exact) abstraction MN →MN−1, which simply discards the last value.
The cofiltered limit limN MN is a profinite model which represents the discrete
dynamical system described by this data.

5.2 Variables in a profinite model

Since a profinite model only contains very abstract information about how it
transforms into finite models, it would seem very difficult to work with it in a
useful way. In this section, we’ll see how the flatness property allows us to treat
a profinite model very much like a finite model.

Definition 5.15. A generalized variable of a profinite model M is an exact
element X ∈ M(X ) for some probability space X ∈ FinProb ⊆ FinModex. The
distribution of the variable is the underlying probability space X .

Note that all generalized variables in this sense have finite outcome space.
It might be possible to define variables with values in profinite sets (cofiltered
limits of finite sets), but we have not developed this idea further.

Example 5.16. For a finite model M , a generalized variable consists of a
function M [G] → X for some finite set X . This is a random variable in the
usual sense — one that only depends on the values of the model.

Since profinite models are flat, given a set of generalized variables, say Xi,
we can find some finite view M → M ′ so that all the variables are variables in
M ′, up to arbitrarily small error. In fact, we can do even better than this:
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Lemma 5.17. Let X,Y be generalized variables of a profinite model M , valued
in the sets X ,Y. Let ε > 0. Then at least one of the following is true:

1. There exists a model M ′ containing three variables, X,Y,C, with causal
graph C → X → Y,C → X, and a diagram

M

M ′ X

Y

(7)

with each map having error less than ε.

2. There exists a model as in case 1., but with the causal direction being
Y → X instead.

Proof. First observe that there is some factorization

M

Mf X

Y

with Mf a finite graphical model, and all arrows having error less than ε. Given
this, we can simply further transform Mf by aggregating all those variables that
are causally upstream of X or Y into one, C, and forgetting all the others. This
leads to the desired model M ′.

Note that both 1. and 2. may be true, if there is no causal relationship
between the two variables. Also note that the confounding variable C does not
have to actually have any effect on X or Y . The point of this proposition is that
we can talk about the causal relationship between two variables in a profinite
model, by placing them in an (approximate) finitary model. We can imagine C
to simply contain all the information about X and Y that comes from variables
upstream of them. The small ε of error may be necessary because there may
be an infinite number of relevant confounding variables — we can approximate
this with finitely many points, but not necessarily with complete precision.

In fact, we can strengthen this statement. The above statement essentially
says that, given any positive bound on the error, we can fit a causal structure to
X and Y within that error bound. But more is true: there exists some causal
structure which can be made to fit within any error bound, and this causal
structure is, in the following weak sense, unique:
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Proposition 5.18. Let X,Y,M,X ,Y be as before. For any ε > 0, we can
consider the following statements

1. Statement 1. from Lemma 5.17.

2. Statement 2. from Lemma 5.17.

3. There exists a model M ′ with three variables X,Y,C, with causal graph
X ← C → Y , and a diagram as Eq. (7), with each map having error < ε.

4. There exists a model M ′ with two variables X,Y , with causal graph X →
Y , and a diagram as Eq. (7), with each map having error < ε.

5. As 4., but with M ′ having causal graph Y → X.

6. As 4. and 5., but with M ′ having a discrete causal graph.

These statements are not mutually exclusive: For any fixed ε, 3 implies both
1 and 2, 4 implies 1, 5 implies 2, and 6 implies all the rest. For any model,
there exists a uniuqe one of these statements, independent of ε, which holds for
all ε > 0, and so that every other statement which holds for all ε is a “formal
consequence” of the first, in the sense that it is among the implications listed
above.

Proof. First, let’s prove that we can always find such a statement. Let S(ε) ⊆
{1, 2, 3, 4, 5, 6, 7} be the subset of numbers so that the statement holds for ε.
Then S(ε) ⊆ S(ε′) if ε < ε′. Since each S(ε) is nonempty (by Lemma 5.17), this
implies that ∩ε>0S(ε) is also nonempty, which is precisely the claim. (This of
course depends on the fact that there is a finite number of statements).

Now let’s prove the “uniqueness” claim. We are claiming that if n and m
both hold for all ε, then there is some statement which holds for all ε and which
“formally” implies both n and m. For example, supose both 4 and 5 hold for
all ε. Then we must show that 6 also holds for all ε.

By assumption, we have models, let’s call them MX→Y and MY→X , with
those causal graphs, and a commutative diagrams

M MY→X

MX→Y X

Y

where each arrow has error at most ε. Using the flatness property of M ,
we can replace M with a finite model M ′. This may increase the error of the
arrows, but only by an arbitrarily small amount, so that we can still have as
small an error as we want.
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Both X and Y are functions of some set of variables within M ′. The upper
path around the diagram means that intervening on a variable that Y depends
on, can perturb the distribution of X by at most ε. Similarly, the lower path
menas that intervening on X can perturb the distribution of Y by at most
ε. This means we can construct an abstraction M ′ → MX⊥Y which simply
deletes the causal relationship between these two variables, and its error will be
bounded by 2ε. Since ε was arbitrarily small, this proves the desired result.

A similar argument proves this result for the other cases.

These seven statements are an enumeration of the possible causal structures
on two variables (including a possible third confounding variable). The content
of the proposition is that the causal structure is well-defined, in a suitable sense.
Of course, if the two variables are causally independent, they can also be fit to
the structure X → Y (with the arrow simply not being causally relevant). What
the propositon says is that there is a well-defined “minimal” causal structure.

It’s worth noting that results like this only work for finite numbers of vari-
ables. In general, asking “countably infinite questions” in a profinite model is
not necessarily well-behaved — this is inherent in the definition of flat func-
tors. In technical terms, we could ask instead that the left Kan extension
[FinModop,Err]→ Err preserves countable limits, instead of merely finite limits.
This would correspond to changing the definition of “cofiltered” to require that,
given a countable collection of objects xi, there is an object y with maps y → xi
for all i.
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