#### Introduction to Markov Categories

Eigil Fjeldgren Rischel

University of Copenhagen

Categorical Probabiliy and Statistics, June 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

# TLDR

- Consider a category where the maps are "stochastic functions", or "parameterized probability distributions".
- This is a symmetric monoidal category
- Many important notions in probability/statistics are expressible as diagram equations in this category.
- We can axiomatize the structure of this category to do "synthetic probability".
- Several theorems admit proofs in this purely synthetic setting.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Overview of talk

Introduction

Diagrams for probability

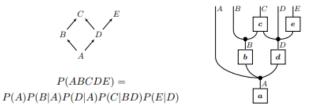
Markov categories

Kolmogorov's 0 to 1 law

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Sufficient statistics

## A graphical model



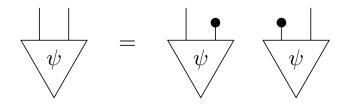
(Figure stolen from Kissinger-Jacobs-Zanasi: Causal Inference by String Diagram Surgery)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

### Independence

A map  $I \to X \otimes Y$  is a "joint distribution". When are the two variables "independent"?

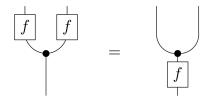
- If the distribution is the product of the marginals.
- If you can generate X and Y separately and get the same result.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

### Deterministic

What does it mean that  $f : X \to Y$  is deterministic? "If you run it twice with the same input, you get the same output".



▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

A *Markov category* (Fritz 2019) is a category with the structure to interpret these examples: a symmetric monoidal category with a terminal unit and a choice of comonoid on every object.



(These have been considered by several different authors)

### Examples of Markov categories

- Stoch: measurable spaces and Markov kernels.
- FinStoch: finite sets and stochastic matrices.
- BorelStoch: *Standard Borel spaces* and Markov kernels.
- Gauss: Finite-dimensional real vector spaces and stochastic processes of the form "an affine map + Gaussian noise".

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- SetMulti: Sets and multivalued functions.
- More exotic examples.

## Kolmogorov's 0 to 1 law (classical)

#### Theorem(Kolmogorov)

Let  $X_1, X_2...$  be an infinite family of independent random variables. Suppose  $A \in \sigma(X_1,...)$  (A is an event which depends "measurably" on these variables), and A is independent of any finite subset of the  $X_n$ s. Then  $P(A) \in \{0, 1\}$ .

Example: A is the event "the sequence  $X_i$  converges". The theorem says either the sequence converges almost surely, or it diverges almost surely.

## Digression: Infinite tensor products

An "infinite tensor product"  $X_{\mathbb{N}} := \bigotimes_{n \in \mathbb{N}} X_n$  is the cofiltered limit of the finite tensor products  $(X_F := \bigotimes_{n \in F} X_n)_{F \subset \mathbb{N} \text{ finite}}$  if this limit exists and is preserved by tensor products  $- \otimes Y$ 

An infinite tensor product is called a *Kolmogorov product* if all the projections to finite tensor products  $\pi_F : X_{\mathbb{N}} \to X_F$  are deterministic.

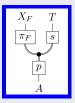
(This somewhat technical condition is necessary to fix the comonoid structure on  $X_{\mathbb{N}}$ )

## Kolmogorov's 0 to 1 law (abstract)

With a suitable definition of infinite tensor products, we can prove:

#### Theorem(Fritz-R)

Let  $p : A \to \bigotimes_{i \in \mathbb{N}} X_n$  and  $s : \bigotimes_{i \in \mathbb{N}} X_i \to T$  be maps, with s deterministic and p presenting the independence of all the Xs. Suppose in each diagram



 $\bigotimes_{i \in F} X_i$  is independent of T. Then  $sp : A \to T$  is deterministic.

Applying this theorem to BorelStoch recovers the classical statement.

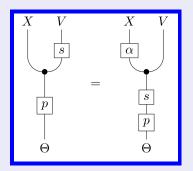
# Proof(sketch)



- ► First, we see that T is independent of the whole infinite product X<sub>N</sub> as well.
- This statement means that two maps  $A \to X_{\mathbb{N}} \otimes T$  agree.
- ▶ By assumption the codomain is a limit, so it suffices to check that all the projections  $A \to X_{\mathbb{N}} \otimes T \to X_F \otimes T$  agree.
- This is true by assumption.
- A diagram manipulation now shows that *T*, being both independent of X<sub>N</sub> and a deterministic function of it, is a deterministic function of *A*.

## Sufficient statistics

- A "statistical model" is simply a map  $p: \Theta \to X$ .
- A "statistic" is a deterministic map  $s: X \to V$ .
- A statistic is sufficient if X⊥Θ|V That means that we have α such that



## Fisher-Neyman

Classically: Suppose we are in "a nice situation" (measures with density...)

#### Fisher-Neyman Theorem

A statistic s(x) is sufficient if and only if the density  $p_{\theta}(x)$  factors as  $h(x)f_{\theta}(s(x))$ 

Abstract version: Suppose we are in "a nice Markov category". Then:

#### Abstract Fisher-Neyman (Fritz)

s is sufficient iff there is  $\alpha: V \to X$  so that  $\alpha sp = p$ , and so that  $s\alpha = 1_V$  almost surely.

### Thank you for listening!

Some papers mentioned:

- Fritz(2019): A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics arxiv:1908.07021.
- Fritz-R(2020): Infinite products and zero-one laws in categorical probability arxiv:1912.02769
- Jacobs-Kissinger-Zanasi(2018): Causal inference by String Diagram Surgery arxiv:1811.08338

ふして 山田 ふぼやえばや 山下